Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a two-dimensional model of a bulk heterojunction solar cell in which we include the effects of optical interference, exciton diffusion, charge separation via the formation of polaron pairs, and charge transport in two separate interpenetrating phases. Our model shows that the current is increased by an order of magnitude with a full optical model compared to assuming that absorbed photons have a Lambertian profile, and depends much more strongly on applied bias when dissociation via polaron pairs is considered. We find a power efficiency at solar intensities of 1-3% depending on the morphology, and show that the fill factor decreases from 40% at low intensities to 20% at solar intensities because of the increase in the open circuit voltage and decreases much more rapidly at higher intensities due to the decrease in the power efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/19/42/424011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!