Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We studied the effect of the substrate on the surface-enhanced Raman scattering (SERS) signals of metallic nanocrystal films by making a direct comparison between cases with metallic and semiconducting substrate surfaces. Ag nanoparticles smaller than 10 nm were synthesized and uniform arrays were formed on both ultrasmooth metallic and Si surfaces. These substrates provide reproducible SERS signals with high enhancement factors over large areas. Moreover, a SERS signal about one order of magnitude higher was obtained in the metallic surface case as compared with the Si substrate case, which is attributed to stronger plasmon coupling between the nanoparticles and their charge-conjugate images in the underlying metallic surface. The interpretation of our experimental results was confirmed by our finite difference time domain calculations. The dependence of the interaction between the nanoparticles and the substrate surface on the direction of the incident electromagnetic field is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/19/41/415702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!