P-doped diamond grown on (110)-textured microcrystalline diamond: growth, characterization and devices.

J Phys Condens Matter

Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium. Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek, Belgium.

Published: September 2009

The formation and properties of (110)-textured P-doped microcrystalline CVD diamond were studied. Based on several microscopy techniques, with a special emphasis on electron backscattered diffraction, a detailed determination of the grain orientations with respect to the exact [110] axis is given. The different orientations present in the film, in combination with low phosphine concentrations in the gas phase, lead to a variation in P incorporation that can vary over three orders of magnitude, as determined with cathodoluminescence mapping. The role of the surface morphology in the observation of these large incorporation differences is explained. Hall measurements confirm that the films are n-type conductive with a thermal activation energy of 0.56 eV. Based on B-doped substrates, pn junctions were created, showing a rectification ratio of nearly 10(4) at ± 25 V.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/36/364204DOI Listing

Publication Analysis

Top Keywords

p-doped diamond
4
diamond grown
4
grown 110-textured
4
110-textured microcrystalline
4
microcrystalline diamond
4
diamond growth
4
growth characterization
4
characterization devices
4
devices formation
4
formation properties
4

Similar Publications

Amorphous porous boron nitride (BN) represents a versatile material platform with potential applications in adsorptive molecular separations and gas storage, as well as heterogeneous and photo-catalysis. Chemical doping can help tailor BN's sorptive, optoelectronic, and catalytic properties, eventually boosting its application performance. Phosphorus (P) represents an attractive dopant for amorphous BN as its electronic structure would allow the element to be incorporated into BN's structure, thereby impacting its adsorptive, optoelectronic, and catalytic activity properties, as a few studies suggest.

View Article and Find Full Text PDF

Upon the UV light irradiation of single-crystal diamonds doped with phosphorus, several effects have been observed. The integral intensity of phosphorus lines in FTIR absorption spectra under UV radiation was increased. A saturation effect depending on the power of the laser radiation was demonstrated.

View Article and Find Full Text PDF

Electric current paths in a Si:P delta-doped device imaged by nitrogen-vacancy diamond magnetic microscopy.

Nanotechnology

October 2022

Sandia National Laboratories, Albuquerque, New Mexico NM-87185, United States of America.

The recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications.

View Article and Find Full Text PDF

The HPHT diamond Schottky diode was assembled as a Metal/Intrinsic/p-doped structure betavoltaic cell (BC) with a very thin (1 μm) drift layer and tested under 5-30 keV electron beam irradiation using a scanning electron microscope (SEM). The effect of the β-radiation energy and the backscattering of electrons on the energy conversion was studied. From the results obtained, it is shown that, the efficiency of the investigated BC increases from 1.

View Article and Find Full Text PDF

Diamond has two crystallographically inequivalent sites in the unit cell. In doped diamond, dopant occupation in the two sites is expected to be equal. Nevertheless, preferential dopant occupation during growth under nonequilibrium conditions is of fundamental importance, for example, to enhance the properties of nitrogen-vacancy (N-V) centers; therefore, this is a promising candidate for a qubit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!