Glycogen synthase kinase-3β is required for the induction of skeletal muscle atrophy.

Am J Physiol Cell Physiol

Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands.

Published: November 2011

Skeletal muscle atrophy commonly occurs in acute and chronic disease. The expression of the muscle-specific E3 ligases atrogin-1 (MAFbx) and muscle RING finger 1 (MuRF1) is induced by atrophy stimuli such as glucocorticoids or absence of IGF-I/insulin and subsequent Akt signaling. We investigated whether glycogen synthase kinase-3β (GSK-3β), a downstream molecule in IGF-I/Akt signaling, is required for basal and atrophy stimulus-induced expression of atrogin-1 and MuRF1, and myofibrillar protein loss in C(2)C(12) skeletal myotubes. Abrogation of basal IGF-I signaling, using LY294002, resulted in a prominent induction of atrogin-1 and MuRF1 mRNA and was accompanied by a loss of myosin heavy chain fast (MyHC-f) and myosin light chains 1 (MyLC-1) and -3 (MyLC-3). The synthetic glucocorticoid dexamethasone (Dex) also induced the expression of both atrogenes and likewise resulted in the loss of myosin protein abundance. Genetic ablation of GSK-3β using small interfering RNA resulted in specific sparing of MyHC-f, MyLC-1, and MyLC-3 protein levels after Dex treatment or impaired IGF-I/Akt signaling. Interestingly, loss of endogenous GSK-3β suppressed both basal and atrophy stimulus-induced atrogin-1 and MuRF1 expression, whereas pharmacological GSK-3β inhibition, using CHIR99021 or LiCl, only reduced atrogin-1 mRNA levels in response to LY294002 or Dex. In conclusion, our data reveal that myotube atrophy and myofibrillar protein loss are GSK-3β dependent, and demonstrate for the first time that basal and atrophy stimulus-induced atrogin-1 mRNA expression requires GSK-3β enzymatic activity, whereas MuRF1 expression depends solely on the physical presence of GSK-3β.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00520.2010DOI Listing

Publication Analysis

Top Keywords

basal atrophy
12
atrophy stimulus-induced
12
atrogin-1 murf1
12
glycogen synthase
8
synthase kinase-3β
8
skeletal muscle
8
muscle atrophy
8
igf-i/akt signaling
8
myofibrillar protein
8
protein loss
8

Similar Publications

The bursa of Fabricius (BF) plays crucial roles in the goslings' immune system. During waterfowl breeding, the presence of lipopolysaccharides (LPSs) in the environment can induce inflammatory damage in geese. Polysaccharides of Atractylodes macrocephala Koidz (PAMKs), as the main active component of the Chinese medicine Atractylodes macrocephala, have significant immune-enhancing effects.

View Article and Find Full Text PDF

Aims: Duodenal Mucosal Resurfacing (DMR) is an endoscopic ablation technique aimed at improving glycemia in patients with type 2 diabetes mellitus (T2DM). Although the exact underlying mechanism is still unclear, it is postulated that the DMR-induced improvements are the result of changes in the duodenal mucosa. For this reason, we assessed macroscopic and microscopic changes in the duodenal mucosa induced by DMR + GLP-1RA.

View Article and Find Full Text PDF

Background And Aims: Cancer cachexia is a complex syndrome affecting most cancer patients and is directly responsible for about 20% of cancer-related deaths. Previous studies showed muscle proteolysis hyper-activation and mitophagy induction in tumor-bearing animals. While basal mitophagy is required for maintaining muscle mass and quality, excessive mitophagy promotes uncontrolled protein degradation, muscle loss and impaired function.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!