A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loss of gremlin delays primordial follicle assembly but does not affect female fertility in mice. | LitMetric

The transforming growth factor beta (TGFB) protein family is renowned for its diverse roles in developmental biology including reproduction. Gremlin is a member of the differential screening-selected gene aberrative in neuroblastoma (DAN)/cerberus family of bone morphogenetic protein (BMP) antagonists. Recent studies on gremlin focus on its involvement in embryonic skeletal, lung, and kidney development. To define the role of gremlin (Grem1) in female reproduction, we analyzed postnatal folliculogenesis using global and conditional knockout (cKO) mice for gremlin. Grem1(-/-) mice die within 48 h after birth, and ovaries collected from neonatal Grem1(-/-) mice demonstrated reduced oocyte numbers and delayed primordial follicle development. Transplanting Grem1(-/-) neonatal ovaries showed that folliculogenesis proceeded to large antral follicle stage, but Grem1(-/-) ovaries contained corpora lutea-like structures not found in control-transplanted ovaries. However, Grem1 cKO mice had comparable fertility to control mice. These data suggest that gremlin plays a previously uncharacterized role in the regulation of oocyte numbers and the timing of primordial follicle development, but either it is not required for later folliculogenesis or its loss is possibly compensated by other BMP antagonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223251PMC
http://dx.doi.org/10.1095/biolreprod.111.091728DOI Listing

Publication Analysis

Top Keywords

primordial follicle
12
bmp antagonists
8
cko mice
8
grem1-/- mice
8
oocyte numbers
8
follicle development
8
mice
6
gremlin
5
loss gremlin
4
gremlin delays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!