Seasonal adjustments to muscle size in migratory birds may result from preparatory physiological changes or responses to changed workloads. The mechanisms controlling these changes in size are poorly understood. We investigated some potential mediators of flight muscle size (myostatin and insulin-like growth factor, IGF1) in pectoralis muscles of wild wintering or migrating white-throated sparrows (Zonotrichia albicollis), captive white-throated sparrows that were photoperiod manipulated to be in a `wintering' or `migratory' (Zugunruhe) state, and captive European starlings (Sturnus vulgaris) that were either exercised for 2 weeks in a wind tunnel or untrained. Flight muscle size increased in photo-stimulated `migrants' and in exercised starlings. Acute exercise but not long-term training caused increased expression of IGF1, but neither caused a change in expression of myostatin or its metalloprotease activator TLL1. Photo-stimulated `migrant' sparrows demonstrated increased expression of both myostatin and IGF1, but wild sparrows exhibited no significant seasonal changes in expression of either myostatin or IGF1. Additionally, in both study species we describe several splice variants of myostatin that are shared with distantly related bird species. We demonstrate that their expression patterns are not different from those of the typical myostatin, suggesting that they have no functional importance and may be mistakes of the splicing machinery. We conclude that IGF1 is likely to be an important mediator of muscle phenotypic flexibility during acute exercise and during endogenous, seasonal preparation for migration. The role of myostatin is less clear, but its paradoxical increase in photo-stimulated `migrants' may indicate a role in seasonal adjustments of protein turnover.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.057620DOI Listing

Publication Analysis

Top Keywords

muscle size
16
flight muscle
12
expression myostatin
12
size migratory
8
migratory birds
8
myostatin
8
seasonal adjustments
8
white-throated sparrows
8
photo-stimulated `migrants'
8
acute exercise
8

Similar Publications

Background: Handgrip strength (HGS) serves as a robust predictor of overall strength across various populations, including individuals with Down Syndrome (DS).

Objective: To analyze the HGS measurement protocols used in studies involving individuals with DS.

Methods: Primary sources were sourced from six databases: PubMed, Scopus, Ovid, Embase, ERIC, and Web of Science, spanning from inception to 23rd December 2023.

View Article and Find Full Text PDF

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Objective: Muscle power is essential for the activities of daily living. Muscle power production depends on numerous factors such as muscle size and length, muscle architecture and fiber type and varies with age during growth. The association between muscle power output during a jump and lower limb muscle volume and length in adolescents is largely unknown.

View Article and Find Full Text PDF

Quantitative ultrasonography of the foot muscles: a comprehensive perspective on reliability.

Quant Imaging Med Surg

January 2025

Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

Background: Quantitative ultrasound imaging is a popular technique to assess the structural properties of the intrinsic and extrinsic foot muscles. Although several studies examined test-retest reliability, specific gaps remain in assessing inter-rater reliability, particularly distinguishing between image acquisition and muscle measurement. Additionally, these studies utilized equipment that may not be generalizable across both clinical and research settings and often involved small sample sizes without prior sample size calculations.

View Article and Find Full Text PDF

This contribution details a new high-fidelity finite element analysis (FEA) methodology for the investigation of the effect of the graft size on the pressure distribution developing at the calcaneocuboid joint after the Evans osteotomy procedure. The FEA model includes all 28 bones of the foot up to the distal end of fibula and tibia as well as soft tissues, tendons, and muscles. The developed FEA model was validated by comparing the in-vivo pressure distribution on the foot plantar with the in-silico results, resulting in a low deviation equal to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!