Mechanisms of endothelin-induced augmentation of the electrical and mechanical activity in rat portal vein.

Pflugers Arch

Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

Published: February 1990

Actions of porcine endothelin (ET) on the electrical and mechanical activity of the rat portal vein were investigated by means of the intracellular microelectrode and isometric tension recording techniques, ET (greater than 0.1 nM) enhanced the amplitude and frequency of the spontaneous contractions which ceased in the presence of 100 nM dihydropyridine derivatives (nifedipine or nicardipine). ET (0.15 nM) increased the frequency of the spontaneous action potentials, with no change in the basal membrane potential. Higher concentrations of ET (greater than or equal to 0.3 nM) further depolarized the membrane potential and increased the spike frequency. After blocking the spontaneous action potentials with nifedipine (100 nM), ET still depolarized the membrane. The depolarization was associated with a reduction in the electrotonic potential and was blocked in a Na-deficient solution (15.5 mM) but not in Ca-free, K-deficient or Cl-deficient solutions. In a Na-deficient solution, ET still evoked action potentials without depolarization. In Ca-free solution, ET depolarized the membrane potential with small oscillations, which were blocked by nifedipine (100 nM). The results indicate that in the rat portal vein, ET enhances electrical and mechanical responses through activation of the dihydropyridine-sensitive and voltage-dependent Ca channels. Acceleration of the Ca entry induced by ET can occur with or without depolarization of the membrane and can enhance the pacemaking mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02583502DOI Listing

Publication Analysis

Top Keywords

electrical mechanical
12
rat portal
12
portal vein
12
action potentials
12
membrane potential
12
depolarized membrane
12
mechanical activity
8
activity rat
8
frequency spontaneous
8
spontaneous action
8

Similar Publications

Transitioning to a power system heavily reliant on renewable wind energy involves more than just replacing conventional fossil-fuel-based power plant with wind farms, the wind energy must be able to meet the requirement of voltage establishment and power balance. It is believed that the self synchronized voltage source control of DFIG wind turbine generator is one of the possible solutions to realize virtual inertia and is helpful to increase the frequency stability of power system, thus is meaningful in the transformation of the power system dominated by renewable energy. Plenty of research has been conducted on the self synchronized voltage source control strategy in steady state, but few research is focused on the soft grid integration, which is a complicated process involving wind turbine control and power converter control.

View Article and Find Full Text PDF

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.

View Article and Find Full Text PDF

Theory of morphodynamic information processing: Linking sensing to behaviour.

Vision Res

January 2025

Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.

The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!