A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding. | LitMetric

Riboswitches are mRNA structural elements that act as intracellular sensors of small-molecule metabolites. By undergoing conformational changes capable of modulating translation or terminating transcription, riboswitches are able to play a role in regulating the concentration of essential metabolites in the cell. Computer-guided fluorescence experiments were carried out to interrogate molecular dynamics and conformational changes in the minimal riboswitch aptamer that binds 7-aminomethyl-7-deazaguanine (preQ₁). Our combined experimental results and computational analysis suggest that the preQ₁ riboswitch apo form is structured but shows no evidence of a ligand-binding pocket. Simulations of the apo and bound forms indicate a large conformational change is triggered by the breaking of the Watson-Crick base pairing of nucleotides G11 and C31 upon preQ₁ removal, followed by collapse of the pocket due to interfering π-stacking. Computational predictions of local aptamer dynamics were validated by fluorescence experiments employing 2-aminopurine substitutions. In-line probing reactions confirmed that fluorophore-labeled riboswitches retain similar higher-order structural features as the unlabeled aptamer upon ligand binding, although their affinity for the ligand is reduced by the introduction of the fluorescent reporter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2011.07.006DOI Listing

Publication Analysis

Top Keywords

conformational changes
12
preq₁ riboswitch
8
riboswitch aptamer
8
aptamer ligand
8
ligand binding
8
fluorescence experiments
8
atomic-scale characterization
4
conformational
4
characterization conformational
4
preq₁
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!