The risk for diabetes increases with increasing BMI<25. Insulin resistance is the key factor for type 2 diabetes; studies revealed that endoplasmic reticulum stress is the main factor behind this disease. With increase in ER stress, pancreatic beta cells start to undergo apoptosis, leading to a decline in the pancreatic beta cell population. The ER stress arises due to unfolded protein response. Recently, spermidine get importance for increasing the longevity in most of the eukaryotes including yeast, Caenorhabditis elegans, Drosophila and human peripheral blood mononuclear cells via induction of autophagy pathway. Autophagy is also involved in regulation of scavenging of proteins. One of the major cellular pathways for scavenging the aggregated intracellular protein is autophagy. Hence spermidine can be a candidate for the treatment type 2 diabetes. Autophagy genes are regulated by mTOR (mammalian Target Of Rapamycin) dependent or independent pathway via AMPK. Hence either inhibition of mTOR or activation of AMPK by spermidine will play two crucial roles, first being the activation of autophagy and secondly the reduction of endoplasmic reticulum stress which will reduce beta cell death by apoptosis and thus can be a novel therapeutic candidate in the treatment of insulin resistance in type 2 diabetes and preserving pancreatic beta cell mass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2011.07.014 | DOI Listing |
Alzheimers Dement
December 2024
Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
Background: Our previous studies reported that D-galactose (D-gal) administration for four to eight weeks caused metabolic disturbance, brain mitochondrial dysfunction, and brain aging, leading to cognitive dysfunction in similar with natural aging condition. Spermidine is a polyamine that can be found naturally. Spermidine has been showed the beneficial effects on various models, such as attenuating metabolic/gut impairments in obesity, and ameliorating memory loss in aged model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Background: An increase in the development of learning deficit occurred during estrogen-deprived periods via the increment of systemic and brain oxidative stress, brain apoptosis, and synaptic dysplasticity. Although estrogen supplementation has been shown to improve the brain function in estrogen-deprived conditions, it can lead to several adverse effects. Therefore, the novel therapeutic approach with minimal side effects to protect brain function in estrogen-deprived conditions should be further investigated.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.
Methods: Here, various seed priming treatments, .
J Anim Sci
December 2024
Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Bacterial contamination is an inevitable issue during the processing of semen preservation in pigs. As a prototypical endotoxin from Gram-negative bacteria in semen, lipopolysaccharide (LPS) undermines sperm function during liquid preservation. Spermine and spermidine could protect cells against LPS-induced injury, and the content of spermine and spermidine in seminal plasma is positively correlated with sperm quality.
View Article and Find Full Text PDFBiol Reprod
November 2024
ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland.
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!