The gas-phase acidities of ca. 60 monosubstituted anilines (with acidity span of almost 50 kcal mol(-1)) have been calculated using density functional theory (DFT) at the B3LYP/6-311+G** level. At this relatively simple level of theory the calculated (ΔG(calc)) and available experimental (ΔG(exp)) acidities are in reasonable quantitative correlation according to the following equation: ΔG(obs) = a + bΔG(calc), where a=20.79, b=0.942, n=27, R(2)=0.990, and s=0.78 kcal·mol(-1). The slope is not far from its ideal value. Substituent effects on the acidities were dissected separately into those operating in the neutral acid molecule and in its conjugated anion using the isodesmic homodesmotic reactions. All in all, both forms, neutral and anionic, are contributing in combination to make up the gross acidity of anilines. However, the contributions of the anions into the gross substituent effects are much larger than the substituent effects in the neutral anilines. Some of the systems were used in testing a relatively new theoretical model, COSMO-RS (conductor-like screening model for real solvents), using it for the prediction of pK(a) values in DMSO. The method proved to be rather accurate for showing pK(a) trends (R(2)=0.980 in DMSO). However, the predicted absolute pK(a) values were all somewhat lower (rmsd=2.49 kcal·mol(-1)) than the respective experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp204064q | DOI Listing |
J Org Chem
January 2025
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China.
Herein, we report the first example that P(O)-H species including -phosphonates and -phosphine oxides could participate in a highly regioselective 1,4-addition to in situ generated 1-benzopyrylium ion from C3-substituted 2-chromene hemiketals, which provides a brand-new and effective approach for the synthesis of C4-phosphorylated 4-chromenes with diverse C3-functionality (ketone, ester, sulfonyl, aryl, and alkyl groups). In total, the reaction features the use of inexpensive Zn(ClO)·6HO as a catalyst, low catalyst loading (only 5 mol %), mild reaction conditions (60 °C, 10 min to 24 h), and broad substrate scope (46 examples) as well as good to high yields (>90% yield on average). More importantly, mechanistic experiments demonstrated the essential role of the C3-substituent on 2-chromene hemiketals in stabilizing the in situ generated 1-benzopyrylium ion and the regioselective 1,4-addition control.
View Article and Find Full Text PDFChemistry
January 2025
VIT University, Materials Chemistry Division, School of Advanced Sciences, VIT University, 632014, Vellore, INDIA.
Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H) production and carbon dioxide (CO) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms.
View Article and Find Full Text PDFChem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, Jawaharnagar, Shamirpet Mandal, 500078, Hyderabad, INDIA.
Despite significant advancements in the structural flexibility and functional diversity of fluorescent molecular sensors, the chromophores often require complex synthetic processes and are typically designed to perform only a specific function. Herein, we have demonstrated the unique features of fluorophores based on a fused coumarin-indole scaffold, which are synthetically available via a one-step reaction. Four fluorophores (ICH, ICEst, ICOMe, and ICNMe2) with varying substituents were synthesized and characterized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!