Phosphorescent binuclear iridium complexes based on terpyridine-carboxylate: an experimental and theoretical study.

Inorg Chem

Laboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E 3 CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054, France.

Published: September 2011

The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic200704sDOI Listing

Publication Analysis

Top Keywords

emission quantum
12
phosphorescent binuclear
8
iridium complexes
8
quantum yield
8
complexes
6
binuclear iridium
4
complexes based
4
based terpyridine-carboxylate
4
terpyridine-carboxylate experimental
4
experimental theoretical
4

Similar Publications

Development of multifunctional fluorescence-emitting potential theranostic agents for Alzheimer's disease.

Talanta

January 2025

Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:

The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.

View Article and Find Full Text PDF

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!