Designing and preparation of magnesium alloys with adjustable biocorrosion rates in the human body and precipitation ability of bone-like apatite layer have been of interest recently. Application of metal matrix composites (MMC) based on magnesium alloys might be an approach to this challenge. The aim of this work was fabrication and evaluation of biocorrosion and bioactivity of a novel MMC made of magnesium alloy AZ91 as matrix and fluorapatite (FA) nano particles as reinforcement. Biodegradable Magnesium-nano fluorapatite metal matrix nanocomposite (AZ91-20FA) was made via a blending-pressing-sintering method. In vitro corrosion tests were performed for evaluation of biocorrosion behavior of produced AZ91-20FA nanocomposite. The results showed that the addition of FA nano particles to magnesium alloy can reduce not only the corrosion rate in a simulated body environment but also accelerate the formation of an apatite layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2011.1310 | DOI Listing |
Sci Adv
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).
View Article and Find Full Text PDFSci Adv
January 2025
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.
View Article and Find Full Text PDFRSC Adv
January 2025
Packing and Packaging Materials Department, Institute of Chemical Industries Research, National Research Centre 33 El Behooth St., Dokki Giza Egypt +20 2 33371718.
Nanofiltration (NF) separation technology is a low-pressure filtration process, which is highly efficient and environmentally friendly. As a result, it has found wide application in water treatment. This work describes the preparation of flat sheet membranes the phase inversion method using blends of hyperbranched polyester amide (PEA) and polyether sulphone (PES) in definite ratios.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
The sluggish redox kinetics of polysulfides and the resulting shuttle effect remain significant challenges for the practical utilization of lithium-sulfur (Li-S) batteries. To address the unidirectional catalytic limitations of conventional electrocatalysts, we herein report a binary metal (CoNi) alloy embedded in a carbon matrix on carbon nanofibers (CoNi@C-CNFs) as a highly efficient electrocatalyst to accelerate bidirectional polysulfide conversions. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) reveals a significantly improved catalytic effect of the CoNi alloy toward polysulfide conversions after introducing the Ni component.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!