Cyanide-bridged metal complexes of [Fe(8)M(6)(μ-CN)(14)(CN)(10)(tp)(8)(HL)(10)(CH(3)CN)(2)][PF(6)](4)⋅n CH(3)CN⋅m H(2)O (HL=3-(2-pyridyl)-5-[4-(diphenylamino)phenyl]-1H-pyrazole), tp(-) =hydrotris(pyrazolylborate), 1: M=Ni with n=11 and m=7, and 2: M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P2(1)/n. They have tetradecanuclear cores composed of eight low-spin (LS) Fe(III) and six high-spin (HS) M(II) ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown-like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro- and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2, respectively. Ac magnetic susceptibility measurements of 1 showed frequency-dependent in- and out-of-phase signals, characteristic of single-molecule magnetism (SMM), while desolvated samples of 2 showed thermal- and photoinduced intramolecular electron-transfer-coupled spin transition (ETCST) between the [(LS-Fe(II))(3) (LS-Fe(III))(5)(HS-Co(II))(3)(LS-Co(III))(3)] and the [(LS-Fe(III))(8)(HS-Co(II))(6)] states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201101404 | DOI Listing |
Mult Scler
January 2025
Blizard Institute, Barts and The London, London, UK.
Background: Biomarkers are needed to track progression in MS trials. Neurofilament heavy chain (NfH) has been underutilized due to assay limitations.
Objective: To investigate the added value of cerebrospinal fluid (CSF) NfH in secondary progressive multiple sclerosis (SPMS) using contemporary immunoassays.
A 1D coordination compound made of a photochromic dithienylethene linker and [Dy(Tp2-py)F]+ units (with Tp2-py = tris(3-(2-pyridyl)pyrazolyl)hydroborate) and having tetrakis[3,5-bis(trifluoromethyl)phenyl]borate counterions is reported. Full photoconversion from the closed isomer to the open isomer of the dithienyethene within single crystals allow for monitoring of the transformation by photocrystallography. Magnetic slow relaxation as well as magnetic hysteresis are observed and can be both modulated upon light irradiation.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell.
View Article and Find Full Text PDFMol Cell
January 2025
Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry, The University of New South Wales (UNSW), Kensington, Sydney, 2052, Australia.
The synthesis and structural characterisation of [Ln(Tp)]I (1-Ln; Ln = La, Ce, Pr, Nd) (Tp = hydrotris(3-(2'-furyl)-pyrazol-1-yl)borate) have been reported as an isomorphous series adopting pseudo-icosahedral ligand field geometries. Continuous shape measurement (CShM) analyses on the crystal field environments of 1-Ln show the smallest values yet reported for complexes employing two hexadentate ligands (-scorpionate environments), with the smallest belonging to 1-La. Single-ion magnetism for 1-Ce, 1-Pr and 1-Nd was probed with ac magnetic susceptibility studies revealing slow magnetic relaxation for 1-Nd in applied magnetic fields and in zero-applied field for 1-Ce, which is a rare observation for Ce(III)-based single-ion magnets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!