The development of the human kidney is a complex process that requires interactions between epithelial and mesenchymal cells, eventually leading to the coordinated growth and differentiation of multiple highly specialized stromal, vascular, and epithelial cell types. The application of molecular biology and immunocytochemistry to the study of cell types involved in renal morphogenesis is leading to a better understanding of nephrogenesis, which requires a fine balance of many factors that can be disturbed by various prenatal events in humans. The aim of this paper is to review human kidney organogenesis, with particular emphasis on the sequence of morphological events, on the immunohistochemical peculiarities of nephron progenitor populations and on the molecular pathways regulating the process of mesenchymal to epithelial transition. Kidney development can be subdivided into five steps: (i) the primary ureteric bud (UB); (ii) the cap mesenchyme; (iii) the mesenchymal-epithelial transition; (iv) glomerulogenesis and tubulogenesis; (v) the interstitial cells. Complex correlations between morphological and molecular events from the origin of the UB and its branching to the metanephric mesenchyme, ending with the maturation of nephrons, have been reported in different animals, including mammals. Marked differences, observed among different species in the origin and the duration of nephrogenesis, suggest that morphological and molecular events may be different in different animal species and mammals. Further studies must be carried out in humans to verify at the morphological, immunohistochemical, and molecular levels if the outcome in humans parallels that previously described in other species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22985DOI Listing

Publication Analysis

Top Keywords

human kidney
12
kidney development
8
cell types
8
morphological molecular
8
molecular events
8
molecular
5
morphogenesis molecular
4
molecular mechanisms
4
mechanisms involved
4
involved human
4

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is often complicated by diabetes, impacting various biochemical and immunological markers. This study aimed to investigate the relationship between irisin, apelin-13, and immunological markers IL-1α and IL-1β in diabetic patients with CKD. This cross-sectional study was conducted from January to June 2023 in a tertiary care hospital in Tikrit City, Iraq.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!