For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon natural human genetic variation to identify effects of these variants on trans-gene expression (expression quantitative trait locus mapping, eQTL) in whole peripheral blood from 1,469 unrelated individuals. We looked at 1,167 published trait- or disease-associated SNPs and observed trans-eQTL effects on 113 different genes, of which we replicated 46 in monocytes of 1,490 different individuals and 18 in a smaller dataset that comprised subcutaneous adipose, visceral adipose, liver tissue, and muscle tissue. HLA single-nucleotide polymorphisms (SNPs) were 10-fold enriched for trans-eQTLs: 48% of the trans-acting SNPs map within the HLA, including ulcerative colitis susceptibility variants that affect plausible candidate genes AOAH and TRBV18 in trans. We identified 18 pairs of unlinked SNPs associated with the same phenotype and affecting expression of the same trans-gene (21 times more than expected, P<10(-16)). This was particularly pronounced for mean platelet volume (MPV): Two independent SNPs significantly affect the well-known blood coagulation genes GP9 and F13A1 but also C19orf33, SAMD14, VCL, and GNG11. Several of these SNPs have a substantially higher effect on the downstream trans-genes than on the eventual phenotypes, supporting the concept that the effects of these SNPs on expression seems to be much less multifactorial. Therefore, these trans-eQTLs could well represent some of the intermediate genes that connect genetic variants with their eventual complex phenotypic outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150446 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1002197 | DOI Listing |
Am J Case Rep
December 2024
Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.
View Article and Find Full Text PDFSci Rep
December 2024
Postgraduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, 35400-000, Brazil.
Atherosclerotic vascular changes can begin during childhood, providing risk for cardiovascular disease (CVD) in adulthood. Identifiable risk factors such as dyslipidemia accelerate this process for some children. The apolipoprotein B (APOB) gene could help explain the inter-individual variability in lipid levels among young individuals and identify groups that require greater attention to prevent CVD.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China.
This study explored the causal relationships among primary sclerosing cholangitis (PSC), ulcerative colitis (UC), and hepatobiliary cancer (HBC) by using bidirectional two-sample, two-step Mendelian randomization (MR) analysis. Genetic variants associated with PSC and UC from the FinnGen research database were used for instrumental variable-based analyses. Mediation analyses were conducted to examine the role of PSC and UC in HBC risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!