Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell signalling, governing protein interactions and protein aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150282PMC
http://dx.doi.org/10.1371/journal.pcbi.1002076DOI Listing

Publication Analysis

Top Keywords

immune synapses
8
protein size
8
individual synapses
8
protein
6
synapses
6
boltzmann energy-based
4
energy-based image
4
image analysis
4
analysis demonstrates
4
demonstrates extracellular
4

Similar Publications

A co-signaling receptor, 2B4, has dual effects in immune cells, but its actual functions in T cells remain elusive. Here, using super-resolution imaging technology with an immunological synapse model, we showed that 2B4 forms "2B4 microclusters" immediately after 2B4-CD48 binding. A lipid phosphatase, SHIP-1, subsequently combined with 2B4 to form coinhibitory signalosomes, leading to the suppression of cytokine production.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

Maternal immune activation alters the GABAergic system in the prefrontal cortex of female rat offspring: Role of interleukin-6.

Neuroscience

January 2025

Department of Physiology, College of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait. Electronic address:

Maternal immune activation (MIA) induces long-term cognitive impairments by modulating the gamma-aminobutyric acid (GABA)ergic system. Experimental evidence suggests that maternal immune challenge with bacterial active ingredient lipopolysaccharide (LPS) reduces GABAergic tone in the offspring's prefrontal cortex. In this study, we aimed to assess whether interleukin-6 (IL-6) contributes to this reduced GABAergic system in the prefrontal cortex of juvenile offspring.

View Article and Find Full Text PDF

Mitochondria-Associated Endoplasmic Reticulum Membranes in Microglia: One Contact Site to Rule Them all.

Contact (Thousand Oaks)

January 2025

Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain.

Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria.

View Article and Find Full Text PDF

Biomolecular condensation has emerged as a general principle in organizing biological processes, including immune response. Xu and colleagues recently reported that the cytoplasmic tail of the CD3ɛ subunit of TCR complex, when fused to CAR, can promote CAR condensation by liquid-liquid phase separation. Through sequence engineering, the authors identified modified CD3ɛ sequences that enhance the maturation of the immunological synapse and co-receptor signaling, leading to an improvement of cytotoxicity in vitro and anti-tumor effects in mouse xenograft models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!