Multipotent mesenchymal stromal cells (MSCs) increase tissue plasminogen activator (tPA) activity in astrocytes of the ischemic boundary zone, leading to increased neurite outgrowth in the brain. To probe the mechanisms that underlie MSC-mediated activation of tPA, we investigated the morphogenetic gene, sonic hedgehog (Shh) pathway. In vitro oxygen and glucose deprivation and coculture of astrocytes and MSCs were used to mimic an in vivo ischemic condition. Both real-time-PCR and western blot showed that MSC coculture significantly increased the Shh level and concomitantly increased tPA and decreased plasminogen activator inhibitor 1 (PAI-1) levels in astrocytes. Inhibiting the Shh signaling pathway with cyclopamine blocked the increase of tPA and the decrease of PAI-1 expression in astrocytes subjected to MSC coculture or recombinant mouse Shh (rm-Shh) treatment. Both MSCs and rm-Shh decreased the transforming growth factor-β1 level in astrocytes, and the Shh pathway inhibitor cyclopamine reversed these decreases. Both Shh-small-interfering RNA (siRNA) and Glil-siRNA downregulated Shh and Gli1 (a key mediator of the Shh transduction pathway) expression in cultured astrocytes and concomitantly decreased tPA expression and increased PAI-1 expression in these astrocytes after MSC or rm-Shh treatment. Our data indicate that MSCs increase astrocytic Shh, which subsequently increases tPA expression and decreases PAI-1 expression after ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210339PMC
http://dx.doi.org/10.1038/jcbfm.2011.116DOI Listing

Publication Analysis

Top Keywords

pai-1 expression
16
tpa expression
12
expression astrocytes
12
multipotent mesenchymal
8
mesenchymal stromal
8
stromal cells
8
increase tpa
8
expression
8
decrease pai-1
8
astrocytes
8

Similar Publications

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Background/aim: G protein-coupled estrogen receptor 1 (GPER1) appears to play a tumor-suppressive role in cervical squamous cell carcinoma (CSCC)GPER1 suppression leads to significantly increased expression of serpin family E member 1 (SERPINE1)/protein plasminogen activator inhibitor type 1 (PAI-1). The question arises, what role does SERPINE1/PAI-1 play in GPER1-dependent tumorigenic potential of CSCC.

Materials And Methods: SiHa and C33A CSCC cells were treated with GPER1 agonist G1 or antagonist G36.

View Article and Find Full Text PDF

Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure.

View Article and Find Full Text PDF

Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism.

J Transl Med

December 2024

Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.

Background: Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear.

Methods: This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests.

View Article and Find Full Text PDF

CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling.

Cell Death Dis

December 2024

Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Acute kidney injury (AKI) caused by nephrotoxins, ischemia reperfusion (IR) or sepsis is associated with high morbidity and mortality. Unveiling new mechanisms underlying AKI can help develop new therapeutic strategy. Cullin 4B (CUL4B) is a scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!