Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor.

Nanotechnology

Department of Chemical Engineering and the Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106-5080, USA.

Published: August 2008

Commercial scale production of silicon carbide (SiC) nanoparticles smaller than 10 nm remains a significant challenge. In this paper, a microwave plasma reactor and appropriate reaction conditions have been developed for the synthesis of amorphous SiC nanoparticles. This continuous gas phase process is amenable to large scale production use and utilizes the decomposition of tetramethylsilane (TMS) for both the silicon and the carbon source. The influence of synthesis parameters on the product characteristics was investigated. The as-prepared SiC particles with sizes between 4 and 6 nm were obtained from the TMS precursor in a plasma operated at low temperature and low precursor partial pressure (0.001-0.02 Torr) using argon as the carrier gas (3 Torr). The carbon:silicon ratio was tuned by the addition of hydrogen and characterized by x-ray photoelectron spectroscopy. The reaction mechanism of SiC nanoparticle formation in the microwave plasma was investigated by mass spectroscopy of the gaseous products.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/19/32/325601DOI Listing

Publication Analysis

Top Keywords

synthesis amorphous
8
silicon carbide
8
low temperature
8
plasma reactor
8
scale production
8
sic nanoparticles
8
microwave plasma
8
amorphous silicon
4
carbide nanoparticles
4
nanoparticles low
4

Similar Publications

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Unraveling the Growth Dynamics of Rutile SnGeO Using Theory and Experiment.

Nano Lett

December 2024

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!