A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pressure-induced magnetic moment collapse and insulator-to-semimetal transition in BiCoO(3). | LitMetric

Pressure-induced magnetic moment collapse and insulator-to-semimetal transition in BiCoO(3).

J Phys Condens Matter

Department of Materials Science, College of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.

Published: July 2009

The structural stability, magnetic properties and electronic structure of tetragonal BiCoO(3) under pressure have been studied by first-principles density functional calculations. The calculated results reveal that no tetragonal-to-cubic and ferroelectric-to-paraelectric phase transitions occur up to 30 GPa with a volume compression of about 25%. An electronic spin crossover transition of the Co(3+) ion from the high-spin to nonmagnetic low-spin configuration (magnetic moment collapse) occurs at 4 GPa by about 4.87% volume compression, which is concomitant with a first-order isosymmetric transition and an insulator-to-semimetal transition. The metallization in BiCoO(3) is driven by the spin-state transition at high pressure. Coexistence of the structural, spin-state and insulator-to-semimetal transitions implies that there is a strong coupling among the lattice, spin and charge degrees of freedom in BiCoO(3).

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/29/295902DOI Listing

Publication Analysis

Top Keywords

magnetic moment
8
moment collapse
8
insulator-to-semimetal transition
8
volume compression
8
transition
5
pressure-induced magnetic
4
collapse insulator-to-semimetal
4
bicoo3
4
transition bicoo3
4
bicoo3 structural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!