Localized basis ab initio molecular dynamics simulation within the density functional framework has been used to generate realistic configurations of amorphous silicon carbide (a-SiC). Our approach consists of constructing a set of smart initial configurations that conform to essential geometrical and structural aspects of the materials obtained from experimental data, which is subsequently driven via a first-principles force field to obtain the best solution in a reduced solution space. A combination of a priori information (primarily structural and topological) along with the ab initio optimization of the total energy makes it possible to model a large system size (1000 atoms) without compromising the quantum mechanical accuracy of the force field to describe the complex bonding chemistry of Si and C. The structural, electronic and vibrational properties of the models have been studied and compared to existing theoretical models and available data from experiments. We demonstrate that the approach is capable of producing large, realistic configurations of a-SiC from first-principles simulation that display its excellent structural and electronic properties. Our study reveals the presence of predominant short range order in the material originating from heteronuclear Si-C bonds with a coordination defect concentration as small as 5% and a chemical disorder parameter of about 8%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/21/26/265801 | DOI Listing |
J Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.
To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution using the wavelength tunability of a synchrotron X-ray source. Our diffractometer unifies XFH and AXS configurations to determine the crystal orientation via diffractometry. In particular, XFH was realised even for a crystal with blurred emission lines by a standing wave in a hologram, and high-throughput AXS with sufficient count statistics and energy resolution was achieved using three multi-array detectors with crystal analysers.
View Article and Find Full Text PDFNanotechnology
December 2024
Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, Virginia, 23284-2512, UNITED STATES.
Nature
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
The demand for the three-dimensional (3D) integration of electronic components is steadily increasing. Despite substantial processing challenges, the through-silicon-via (TSV) technique emerges as the only viable method for integrating single-crystalline device components in a 3D format. Although monolithic 3D (M3D) integration schemes show promise, the seamless connection of single-crystalline semiconductors without intervening wafers has yet to be demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!