Background: Circulating immune complexes (CIC) containing galactose (Gal)-deficient IgA1 from adults with IgA nephropathy (IgAN) induce proliferation of cultured mesangial cells, but activities of CIC from pediatric patients with the disease have not been studied.

Methods: CIC of different sizes were isolated from sera of pediatric and adult IgAN patients and their effects on cultured human mesangial cells (MC) were assessed by measuring cellular proliferation, expression of IL-6 and IL-8 and laminin and phosphotyrosine signaling.

Results: Large CIC from pediatric IgAN patients (>800 kDa) containing Gal-deficient IgA1 stimulated cellular proliferation, whereas in some patients, smaller CIC were inhibitory. Addition of stimulatory and inhibitory CIC to MC differentially altered phosphorylation patterns of three major tyrosine-phosphorylated proteins of molecular mass 37, 60 and 115 kDa. The stimulatory CIC transiently increased tyrosine-phosphorylation of the 37-kDa protein and decreased phosphorylation of the other two proteins, whereas the inhibitory CIC increased phosphorylation of all three proteins. Furthermore, we investigated the influence of IgA1-containing CIC from sera of children with IgAN with clinically active disease (i.e., abnormal urinalysis and/or serum creatinine concentration) or inactive disease (i.e., normal urinalysis and serum creatinine concentration) on the expression of IL-6 and IL-8 genes by mesangial cells. Real-time reverse transcription-polymerase chain reaction results showed that the CIC from a patient with active disease stimulated MC to express the two cytokine genes at higher levels than did the CIC from a patient with inactive disease. Moreover, stimulatory CIC increased production of the extracellular matrix protein laminin.

Conclusion: These data indicate that sera of pediatric IgAN patients contain biologically active CIC with Gal-deficient IgA1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203630PMC
http://dx.doi.org/10.1093/ndt/gfr448DOI Listing

Publication Analysis

Top Keywords

mesangial cells
16
cic
13
gal-deficient iga1
12
igan patients
12
immune complexes
8
pediatric patients
8
iga nephropathy
8
cultured human
8
human mesangial
8
cic pediatric
8

Similar Publications

Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.

Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.

Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.

View Article and Find Full Text PDF

SP1 activates AKT3 to facilitate the development of diabetic nephropathy.

J Endocrinol Invest

January 2025

Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.

Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.

View Article and Find Full Text PDF

Extracellular Ca is the first ligand that has been confirmed to function by activating the calcium-sensing receptor (CaSR), a member of G-protein coupled receptors. CaSR controls not only calcium homeostasis, but also plays a pivotal role in many cellular processes such as cell proliferation and apoptosis; moreover, it is implicated in the development of cardiovascular diseases. TGF-β/Smads signaling pathway is a classical pathway of renal fibrosis.

View Article and Find Full Text PDF

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!