Broad spectrum antimicrobial activity of functionalized polyanilines.

Acta Biomater

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.

Published: December 2011

The antimicrobial properties of conductive functionalized polyanilines (fPANI) were investigated by exploring their interaction with bacterial cells. In sharp contrast to polyaniline (PANI), lower concentrations of fPANI were needed to strongly inhibit the growth of wild-type Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, as well as several antibiotic-resistant clinical pathogens. To gain an insight into how fPANI have an impact on cellular physiology we used a whole genome expression study in the model E. coli MG1655 strain exposed to a representative fPANI. The expression levels of 218 (∼5.1%) genes changed significantly. Moreover, we found that certain oxidative damage-responsive genes were strongly induced, while genes potentially involved in energy metabolism and transport and in forming bacterial cell walls and stress-resistant cellular communities (biofilms) were repressed. Taken together, our results appear to indicate that the antimicrobial effects of fPANI, in part at least, might stem from their ability to target the operations of multiple and diverse cellular processes, and suggest that fPANI could be useful ingredients for biomaterials used in the development of food packaging and medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2011.07.018DOI Listing

Publication Analysis

Top Keywords

functionalized polyanilines
8
fpani
6
broad spectrum
4
spectrum antimicrobial
4
antimicrobial activity
4
activity functionalized
4
polyanilines antimicrobial
4
antimicrobial properties
4
properties conductive
4
conductive functionalized
4

Similar Publications

Organic Metasurfaces with Contrasting Conducting Polymers.

Nano Lett

January 2025

Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

With the rapid development of wearable electronic devices, flexible supercapacitors have gained strong interest. However, traditional sandwich supercapacitors have weak interfacial binding, resulting in high interface resistance and poor deformability. Herein, a self-healing integrated supercapacitor based on a polyacrylic acid-polyisodecyl methacrylate-CoSO gel polymer electrolyte (GPE) was developed.

View Article and Find Full Text PDF

Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection.

Bioelectrochemistry

December 2024

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!