Insulin and insulin-like-growth-factor 1 (IGF1) are components of the uterine secretions. As potent growth factors they influence early embryo development. The underlying molecular mechanisms are largely unknown. Here we report on the effects of insulin and IGF1 on early gastrulation in rabbit blastocysts. We have studied blastocysts grown in vivo in metabolically healthy rabbits, in rabbits with type 1 diabetes and in vitro in the presence or absence of insulin or IGF1. Embryonic disc morphology and expression of Brachyury, Wnt3a and Wnt4 were analysed by qPCR and IHC. Pre-gastrulated blastocysts (stage 0/1) cultured with insulin or IGF1 showed a significantly higher capacity to form the posterior mesoderm and primitive streak (stage 2 and 3) than blastocysts cultured without growth factors. In gastrulating blastocysts the levels of the mesoderm-specific transcription factor Brachyury and the Wnt signalling molecules Wnt3a and Wnt4 showed a stage-specific expression pattern with Brachyury transcripts increasing from stage 0/1 to 3. Wnt4 protein was found spread over the whole embryoblast. Insulin induced Wnt3a, Wnt4 and Brachyury expression in a temporal- and stage-specific pattern. Only blastocysts cultured with insulin reached the Wnt3a, Wnt4 and Brachyury expression levels of stage 2 in vivo blastocysts, indicating that insulin is required for Wnt3a, Wnt4 and Brachyury expression during gastrulation. Insulin-induced Wnt3a and Wnt4 expression preceded Brachyury. Wnt3a-induced expression could be depleted by MEK1 inhibition (PD98059). Involvement of insulin in embryonic Wnt3a expression was further shown in vivo with Wnt3a expression being notably down regulated in stage 2 blastocysts from rabbits with type 1 diabetes. Blastocysts grown in diabetic rabbits are retarded in development, a finding which supports our current results that insulin is highly likely required for early mesoderm formation in rabbit blastocysts by inducing a distinct spatiotemporal expression profile of Wnt3a, Wnt4 and Brachyury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2011.07.044 | DOI Listing |
J Cell Mol Med
January 2025
Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, P. R. China.
The activation of the human interferon-inducible protein X (IFIX) isoform is associated with maintaining a stable cytoskeleton and inhibiting epithelial-mesenchymal transition (EMT). However, the mechanisms and pathways underlying IFIX-mediated oncogenesis are not well understood. In this study, we investigated the effects of IFIX overexpression and knockdown in CAL-27 and SCC-25 oral squamous cell carcinoma (OSCC) cells.
View Article and Find Full Text PDFJ Orthop Translat
July 2024
Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China.
Background: The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/β-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/β-catenin signaling pathways in muscle-bone crosstalk.
View Article and Find Full Text PDFClin Oral Investig
December 2023
Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
Objectives: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4.
Materials And Methods: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis.
Int J Mol Sci
December 2023
Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
Unlabelled: MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development.
Objective: To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA).
Method: The cross-sectional observational study comprised 94 subjects.
Cancer Res Commun
January 2024
Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Unlabelled: Wnt ligand WNT4 is critical in female reproductive tissue development, with WNT4 dysregulation linked to related pathologies including breast cancer (invasive lobular carcinoma, ILC) and gynecologic cancers. WNT4 signaling in these contexts is distinct from canonical Wnt signaling yet inadequately understood. We previously identified atypical intracellular activity of WNT4 (independent of Wnt secretion) regulating mitochondrial function, and herein examine intracellular functions of WNT4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!