The acquisition of specific cell fates throughout embryonic development is one of the core problems in developmental and evolutionary biology. In the amphipod Parhyale hawaiensis all three germ layers and the germ line are determined by the eight-cell stage. Despite this early fate determination, multiple cell types can be replaced following ablation of their founder cells, showing that this embryo also has significant regulative properties. Here we present a cellular-level resolution lineage analysis for P. hawaiensis embryos between fertilization and gastrulation, including analysis of cleavage patterns, division times, and clonal behaviors. We compare these cellular behaviors in wild type embryos with those in embryos where specific founder cells have been ablated, or where zygotic transcription has been inhibited. We observe that when germ line, endoderm or mesoderm founder cells are ablated, the remaining cells do not alter their cleavage or migration behaviors before the onset of gastrulation. In the absence of zygotic transcription, ingression movements proceed normally, but epibolic movements are disrupted. This indicates that the embryo's regulative response to germ layer founder loss, in the form of altered cell behavior, is realized in the ~32h between gastrulation and early germ band elongation, and is likely to require zygotic reprogramming rather than alternative deployment of maternally supplied determinants. Combining these data with the observations of previous studies, we propose a framework to elucidate the molecular mechanisms that regulate the determinative and regulative properties of the P. hawaiensis embryo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2011.07.029 | DOI Listing |
J Hepatol
January 2025
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:
Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.
View Article and Find Full Text PDFImmunity
December 2024
Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands. Electronic address:
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A24:02 allele.
View Article and Find Full Text PDFCell Chem Biol
December 2024
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!