Rapid presumptive "fingerprinting" of body fluids and materials by ATR FT-IR spectroscopy.

J Forensic Sci

Department of Chemistry, Criminalistics Program, Metropolitan State College of Denver, PO Box 173362, Campus Box 52, Denver, CO 80217-3362, USA.

Published: November 2011

Human body fluids and materials were evaluated using attenuated total reflectance Fourier transform infrared spectroscopy. Purified proteins, cosmetics, and foodstuffs were also assayed with the method. The results of this study show that the sampled fluids and materials vary in the fingerprint region and locations of the amide I peaks because of the secondary structure of the composite proteins although the C = O stretch is always present. The distinct 1016 cm(-1) peak serves as a signature for semen. The lipid-containing materials (e.g., fingerprints, earwax, tears, and skin) can also be easily separated from the aqueous materials because of the strong CH(3) asymmetric stretch of the former. Blood-saliva and blood-urine mixtures were also successfully differentiated using combinations of peaks. Crime scene investigators employing rapid, portable, or handheld infrared spectroscopic instruments may be able to reduce their need for invasive, destructive, and consumptive presumptive test reagents in evaluating trace evidence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1556-4029.2011.01870.xDOI Listing

Publication Analysis

Top Keywords

fluids materials
12
body fluids
8
materials
5
rapid presumptive
4
presumptive "fingerprinting"
4
"fingerprinting" body
4
materials atr
4
atr ft-ir
4
ft-ir spectroscopy
4
spectroscopy human
4

Similar Publications

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

The effect of atomic vibration on thermal transport in diatomic semiconductors investigated molecular dynamics.

Nanoscale

January 2025

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.

Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.

View Article and Find Full Text PDF

Design Principles From Natural Olfaction for Electronic Noses.

Adv Sci (Weinh)

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures.

View Article and Find Full Text PDF

The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA).

View Article and Find Full Text PDF

and are robust biomarkers for gingivitis and periodontitis in small dogs.

Front Vet Sci

January 2025

Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea.

Introduction: Periodontal disease is one of the most common oral diseases in dogs and humans. It starts with gingivitis, a reversible condition, and progresses to an irreversible condition, periodontitis. Unlike humans, the etiology of periodontal disease in dogs has not been widely studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!