First principles Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles were performed to map the vapor-liquid coexistence curves of methanol and methane described by Kohn-Sham density functional theory using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation functionals with the Grimme correction term for dispersive (D2) interactions. The simulations indicate that the BLYP-D2 description with the TZV2P basis set underpredicts the saturated vapor densities and overpredicts the saturated liquid densities and critical and boiling temperatures for both compounds. Although the deviations are quite large, these results present a significant improvement over the BLYP functional without the correction term, which misses the experimental results by a larger extent in the opposite direction. Simulations at one temperature indicate that use of the larger QZV3P basis set may lead to improved saturated vapor densities, but not to significant changes in the liquid density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp205072v | DOI Listing |
J Chem Phys
October 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Chemical reactions and vapor-liquid equilibria for molten lithium hydroxide (LiOH) were studied using molecular dynamics simulations and a deep potential (DP) model. The neural network for the model was trained on quantum density functional theory data for a range of conditions. The DP model allows simulations over timescales of hundreds of ns, which provide equilibrium compositions for the systems of interest.
View Article and Find Full Text PDFJ Chem Phys
April 2024
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
The focus of our study is an in-depth investigation of the quantum effects associated with the surface tension and other thermodynamic properties of nanoscopic liquid drops. The behavior of drops of quantum Lennard-Jones fluids is investigated with path-integral Monte Carlo simulations, and the test-area method is used to determine the surface tension of the spherical vapor-liquid interface. As the thermal de Broglie wavelength, λB, becomes more significant, the average density of the liquid drop decreases, with the drop becoming mechanically unstable at large wavelengths.
View Article and Find Full Text PDFJ Chem Phys
April 2024
Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom.
The Zeno line is the locus of points on the temperature-density plane where the compressibility factor of the fluid is equal to one. It has been observed to be straight for a broad variety of real fluids, although the underlying reasons for this are still unclear. In this work, a detailed study of the Zeno line and its relation to the vapor-liquid coexistence curve is performed for two simple model pair-potential fluids: attractive square-well fluids with varying well-widths λ and Mie n-6 fluids with different repulsive exponents n.
View Article and Find Full Text PDFPhys Rev E
February 2024
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
We present a theory for the interfacial wetting phase behavior of binary liquid mixtures on rigid solid substrates, applicable to both miscible and immiscible mixtures. In particular, we calculate the binding potential as a function of the adsorptions, i.e.
View Article and Find Full Text PDFMaterials (Basel)
December 2023
Institute of Metallurgy and Ore Beneficiation JSC, Satbayev University, Almaty 050010, Kazakhstan.
The authors conducted liquid solution studies of antimony with selenium and sulfur in order to provide information on the thermodynamic functions of the formation of these alloys. The studies are based on the vapor pressure values of the components, comprising the double partial systems of antimony with antimony chalcogenides (SbSe and SbS) and antimony chalcogenides with chalcogens (Se and S). We calculated the thermodynamic functions of mixing (graphical dependencies) and evaporation (tabular data) based on the partial vapor pressure values of components, which are represented by temperature-concentration dependencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!