α- and β-MnO(2) were controllably synthesized by hydrothermally treating amorphous MnO(2) obtained via a reaction between Mn(2+) and MnO(4)(-), and cationic effects on the hydrothermal crystallization of MnO(2) were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO(2) dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K(+), NH(4)(+) and H(+) in the hydrothermal systems. The experimental results showed that K(+)/NH(4)(+) were in competition with H(+) to form polymorphs of α- and β-MnO(2), i.e., higher relative K(+)/NH(4)(+) concentration favoured α-MnO(2), while higher relative H(+) concentration favoured β-MnO(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/19/22/225606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!