Enhancement in hydrogen storage in carbon nanotubes under modified conditions.

Nanotechnology

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

Published: April 2008

AI Article Synopsis

Article Abstract

We investigate the hydrogen adsorbing characteristics of single-walled carbon nanotubes (CNTs) through fundamental molecular dynamics simulations that characterize the role of ambient pressure and temperature, the presence of surface charges on the CNTs, inclusion of metal ion interconnects, and nanocapillary effects. While the literature suggests that hydrogen spillover due to the presence of metallic contaminants enhances storage on and inside the nanotubes, we find this to be significant for alkali and not transition metals. Charging the CNT surfaces does not significantly enhance hydrogen storage. We find that the bulk of the hydrogen storage occurs inside CNTs due to their nanocapillarity effect. Storage is much more dependent on external thermodynamic conditions such as the temperature and the pressure than on these facets of the CNT structure. The dependence of storage on the external thermodynamic conditions is analyzed and the optimal range of operating conditions is identified.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/19/15/155702DOI Listing

Publication Analysis

Top Keywords

hydrogen storage
12
carbon nanotubes
8
external thermodynamic
8
thermodynamic conditions
8
storage
6
enhancement hydrogen
4
storage carbon
4
nanotubes modified
4
conditions
4
modified conditions
4

Similar Publications

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Maximizing H Production from a Combination of Catalytic Partial Oxidation of CH and Water Gas Shift Reaction.

Molecules

January 2025

The Joint Graduate School of Energy and Environment, CHE Center for Energy Technology and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.

A single-bed and dual-bed catalyst system was studied to maximize H production from the combination of partial oxidation of CH and water gas shift reaction. In addition, the different types of catalysts, including Ni, Cu, Ni-Re, and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400-650 °C). Over Ni-based catalysts, methane can easily dissociate on a Ni surface to give hydrogen and carbon species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!