Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys.

J Phys Condens Matter

Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia, Spain.

Published: June 2009

Magnetic Heusler alloys which undergo a martensitic transition display interesting functional properties. In the present review, we survey the magnetocaloric effects of Ni-Mn-based Heusler alloys and discuss their relation with the magnetic shape-memory and magnetic superelasticity reported in these materials. We show that all these effects are a consequence of a strong coupling between structure and magnetism which enables a magnetic field to rearrange martensitic variants as well as to provide the possibility to induce the martensitic transition. These two features are respectively controlled by the magnetic anisotropy of the martensitic phase and by the difference in magnetic moments between the structural phases. The relevance of each of these contributions to the magnetocaloric properties is analysed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/23/233201DOI Listing

Publication Analysis

Top Keywords

heusler alloys
12
martensitic transition
8
magnetic
6
magnetocaloric relation
4
relation shape-memory
4
shape-memory properties
4
properties ferromagnetic
4
ferromagnetic heusler
4
alloys magnetic
4
magnetic heusler
4

Similar Publications

Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.

View Article and Find Full Text PDF

Artificial Control of Giant Converse Magnetoelectric Effect in Spintronic Multiferroic Heterostructure.

Adv Sci (Weinh)

December 2024

Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.

To develop voltage-controlled magnetization switching technologies for spintronics applications, a highly (422)-oriented CoFeSi layer on top of the piezoelectric PMN-PT(011) is experimentally demonstrated by inserting a vanadium (V) ultra-thin layer. The strength of the growth-induced magnetic anisotropy of the (422)-oriented CoFeSi layers can be artificially controlled by tuning the thicknesses of the inserted V and the grown CoFeSi layers. As a result, a giant converse magnetoelectric effect (over 10 s m) and a non-volatile binary state at zero electric field are simultaneously achieved in the (422)-oriented CoFeSi/V/PMN-PT(011) multiferroic heterostructure.

View Article and Find Full Text PDF

We demonstrate experimentally that the combination of half-metallic property and shape memory features of the NiMnGaCu (NMGC) alloy can synergistically catalyze both the oxygen and hydrogen evolution reactions, leading to excellent water splitting. NMGC, a copper-doped nickel-based ferromagnetic shape memory alloy, undergoes first-order martensite to austenite phase transition with temperature variations. The martensite phase of NMGC demonstrates remarkable efficiency for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

The external field-assisted hydrogen evolution reaction (HER), beyond modifying electrocatalysts themselves, has garnered significant research attention. However, achieving synergy between multiple fields to enhance the HER performance remains challenging and is not well-explored. Here, NiMnIn Heusler alloy thin films are fabricated using pulsed laser deposition on flexional Cu substrates.

View Article and Find Full Text PDF

Large Spin Hall Efficiency and Current-Induced Magnetization Switching in Ferromagnetic Heusler Alloy CoMnAl-Based Magnetic Trilayers.

Adv Sci (Weinh)

December 2024

Shanghai Key Laboratory of Special Artificial Microstructure Materials and School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.

Article Synopsis
  • * Recent research shows that ferromagnetic materials are effective spin sources, with a focus on developing those that exhibit high spin Hall efficiency.
  • * The study reports a high spin Hall efficiency in the ferromagnetic Heusler alloy CoMnAl (CMA), achieving values of 0.077 and 0.029 in different phases, leading to advancements in SOT device technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!