Dynamics of confined suspensions of swimming particles.

J Phys Condens Matter

Departamento de Materiales, Universidad Nacional de Colombia Sede Medellín, Carrera 80 # 65-223, Bloque M3-050, Medellín, Colombia.

Published: May 2009

Low Reynolds number direct simulations of large populations of hydrodynamically interacting swimming particles confined between planar walls are performed. The results of simulations are compared with a theory that describes dilute suspensions of swimmers. The theory yields scalings with concentration for diffusivities and velocity fluctuations as well as a prediction of the fluid velocity spatial autocorrelation function. Even for uncorrelated swimmers, the theory predicts anticorrelations between nearby fluid elements that correspond to vortex-like swirling motions in the fluid with length scale set by the size of a swimmer and the slit height. Very similar results arise from the full simulations indicating either that correlated motion of the swimmers is not significant at the concentrations considered or that the fluid phase autocorrelation is not a sensitive measure of the correlated motion. This result is in stark contrast with results from unconfined systems, for which the fluid autocorrelation captures large-scale collective fluid structures. The additional length scale (screening length) introduced by the confinement seems to prevent these large-scale structures from forming.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/20/204107DOI Listing

Publication Analysis

Top Keywords

swimming particles
8
swimmers theory
8
length scale
8
correlated motion
8
fluid
6
dynamics confined
4
confined suspensions
4
suspensions swimming
4
particles low
4
low reynolds
4

Similar Publications

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.

View Article and Find Full Text PDF

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.

View Article and Find Full Text PDF

Transport and energetics of bacterial rectification.

Proc Natl Acad Sci U S A

December 2024

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.

Randomly moving active particles can be herded into directed motion by asymmetric geometric structures. Although such a rectification process has been extensively studied due to its fundamental, biological, and technological relevance, a comprehensive understanding of active matter rectification based on single particle dynamics remains elusive. Here, by combining experiments, simulations, and theory, we study the directed transport and energetics of swimming bacteria navigating through funnel-shaped obstacles-a paradigmatic model of rectification of living active matter.

View Article and Find Full Text PDF

A new genus and species of the family Pseudocyclopidae, , was described based on specimens collected using a light trap in the marine cave of Sipadan Island, Sabah, Malaysia. The new genus is most related to , primarily based on the similarity observed in the armament of ancestral segment IV of the male antennules, the armament of the female P5 Exp-3, the segmentation of the male P5, the armament of the maxillular basal exite, and the relative length of the ancestral segment XXVII of the antennules. Nevertheless, it distinguishes itself from and all other genera of the family by the absence of the lateral seta of the basis of all swimming legs, the presence of an inner seta on the coxa of the female P5, the reduction of furcal setae I and III, as well as the specific armament of the ancestral segment XX of the antennules and the maxillular coxal endite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!