A study of the electronic structure and magnetic properties of Co doped ZnO thin films synthesized by ion implantation followed by swift heavy ion irradiation is presented using near-edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. The spectral features of NEXAFS at the Co L(3,2)-edge show entirely different features than that of metallic Co clusters and other Co oxide phases. The atomic multiplet calculations are performed to determine the valence state, symmetry and the crystal field splitting, which show that in the present system Co is in the 2+ state and substituted at the Zn site in tetrahedral symmetry with 10Dq = -0.6 eV. The ferromagnetic character of these materials is confirmed through XMCD spectra. To rule out the possibilities of defect induced magnetism, the results are compared with Ar annealed and Ar-ion implanted pure ZnO thin films. The presented results confirm the substitution of Co at the Zn site in the ZnO matrix, which is responsible for room temperature ferromagnetism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/21/18/185005 | DOI Listing |
Nanomaterials (Basel)
January 2025
Tecnológico Nacional de México Campus Tuxtla, Carretera Panamericana Km 1080, Tuxtla Gutiérrez C.P. 29050, Mexico.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, South Korea.
Zinc oxide (ZnO) thin-film transistors (TFTs) can be promising for applications in wide-band light absorption. However, they suffer from retarded photoresponse characteristics due to atomic defects and the resulting localized electronic states. To investigate the photoinduced localized states of the ZnO TFTs, here, we combine X-ray photoelectron spectroscopy, atomic force microscopy, and density functional theory (DFT) calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.
To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!