Understanding electronic structure at the nanoscale is crucial to untangling fundamental physics puzzles such as phase separation and emergent behavior in complex magnetic oxides. Probes with the ability to see beyond surfaces on nanometer length and subpicosecond time scales can greatly enhance our understanding of these systems and will undoubtedly impact development of future information technologies. Polarized X-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional X-ray microscopes is limited by the nanometer precision required to fabricate X-ray optics. Here we present a novel approach to lensless imaging of an extended magnetic nanostructure, in which a scanned series of dichroic coherent diffraction patterns is recorded and numerically inverted to map its magnetic domain configuration. Unlike holographic methods, it does not require a reference wave or precision optics. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent X-ray flux, wavelength, and stability of the sample with respect to the beam. It can readily be extended to nonmagnetic systems that exhibit circular or linear dichroism. We demonstrate this approach by imaging ferrimagnetic labyrinthine domains in a Gd/Fe multilayer with perpendicular anisotropy and follow the evolution of the domain structure through part of its magnetization hysteresis loop. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant X-ray sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158233 | PMC |
http://dx.doi.org/10.1073/pnas.1104304108 | DOI Listing |
Phys Rev E
August 2023
Far Eastern Federal University, Institute of High Technologies and Advanced Materials, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia.
We investigated the properties of cholesteric liquid crystals (CLCs) being in an external static magnetic field directed along the helix axis. We considered a dichroic CLC, that is, CLC with parameters ReΔ=Reɛ_{1}-Reɛ_{2}/2=0 and ImΔ=Imɛ_{1}-Imɛ_{2}/2≠0, where ɛ_{1,2} are the principal values of the local dielectric permittivity tensor. We have shown that in the case of the wavelength dependence of the magneto-optic activity parameter, new features appear in the optics of dichroic CLCs, in particular, in this case new Dirac points appear.
View Article and Find Full Text PDFWhile two-photon fluorescence microscopy is a powerful platform for the study of functional dynamics in living cells and tissues, the bulk motion inherent to these applications causes distortions. We have designed a motion tracking module based on spectral domain optical coherence tomography which compliments a laser scanning two-photon microscope with real-time corrective feedback. The module can be added to fluorescent imaging microscopes using a single dichroic and without additional contrast agents.
View Article and Find Full Text PDFPhys Rev Lett
March 2022
National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada.
We propose a quantum memory protocol based on trapping photons in a fiber-integrated cavity, comprised of a birefringent fiber with dichroic reflective end facets. Photons are switched into resonance with the fiber cavity by intracavity Bragg-scattering frequency translation, driven by ancillary control pulses. After the storage delay, photons are switched out of resonance with the cavity, again by intracavity frequency translation.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2021
State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
Coherent longitudinal lattice vibrations of black phosphorus provide unique access to the out-of-plane strain coupled in-plane optical properties. In this work, polarization-resolved femtosecond transient absorption microscopy is applied to study the anisotropic coherent phonon responses. Multiorder phonon harmonics were observed with thickness dependence well explained by the linear chain model, allowing rapid optical mapping of phonon frequency distributions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095;
Biominerals such as seashells, coral skeletons, bone, and tooth enamel are optically anisotropic crystalline materials with unique nanoscale and microscale organization that translates into exceptional macroscopic mechanical properties, providing inspiration for engineering new and superior biomimetic structures. Using coral skeleton as a model, here, we experimentally demonstrate X-ray linear dichroic ptychography and map the -axis orientations of the aragonite (CaCO) crystals. Linear dichroic phase imaging at the oxygen K-edge energy shows strong polarization-dependent contrast and reveals the presence of both narrow (<35°) and wide (>35°) -axis angular spread in the coral samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!