Although predominantly expressed on lymphocytic and hematopoietic cells, the role of sphingosine-1-phospate receptor 4 (S1P(4)) in immune homeostasis is still poorly understood. In this report, we used a S1P(4)-deficient murine model to characterize the biological role of S1P(4)-mediated S1P signaling in the immune system. S1p(4)(-/-) animals showed normal peripheral lymphocyte numbers and a regular architecture of secondary lymphoid organs. Interestingly, S1P(4) only marginally affects T-cell function in vivo. In contrast, dendritic cell (DC) migration and cytokine secretion are profoundly affected by S1P(4) deficiency. Lack of S1P(4) expression on DCs significantly reduces T(H)17 differentiation of T(H) cells. Furthermore, in various in vivo models of T(H)1- or T(H)2-dominated immune reactions, S1P(4) deficiency consistently increased the amplitude of T(H)2-dominated immune responses, while those depending on T(H)1-dominated mechanisms were diminished. Finally, S1p(4)(-/-) mice showed decreased pathology in a model of dextran sulfate sodium-induced colitis. In summary, for the first time, we show that S1P(4) signaling is involved in the regulation of DC function and T(H)17 T-cell differentiation. S1P(4)-mediated S1P signaling also modifies the course of various immune diseases in a murine model. We propose that S1P(4) may constitute an interesting target to influence the course of various autoimmune pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.10-179028 | DOI Listing |
Cytotherapy
November 2024
Department of Translational and Precision Medicine, University of Rome, Rome, Italy. Electronic address:
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFHum Genet
January 2025
Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!