HDAC inhibitors have been proposed as radiosensitizers in cancer therapy. Their application would permit the use of lower radiation doses and would reduce the adverse effects of the treatment. However, the molecular mechanisms of their action remain unclear. In the present article, we have studied the radiosensitizing effect of sodium butyrate on HeLa cells. FACS analysis showed that it did not abrogate the γ-radiation imposed G2 cell cycle arrest. The dynamics of γ-H2AX foci disappearance in the presence and in the absence of butyrate, however, demonstrated that butyrate inhibited DSB repair. In an attempt to clarify which one of the two major DSBs repair pathways was affected, we synchronized HeLa cells in G1 phase and after γ-irradiation followed the repair of the DSBs by agarose gel electrophoresis. Since HR is not operational during G1 phase, by this approach we determined the rates of NHEJ only. The results showed that NHEJ decreased in the presence of butyrate. In another set of experiments, we followed the dynamics of disappearance of RAD51 foci in the presence and in the absence of butyrate after γ-radiation of HeLa cells. Since RAD51 takes part in HR only, this experiment allows the effect of butyrate on DSB repair by homologous recombination to be assessed. It showed that HR was also obstructed by butyrate. These results were confirmed by host cell reactivation assays in which the repair of plasmids containing a single DSB by NHEJ or HR was monitored. We suggest that after a DSB is formed, HDACs deacetylated core histones in the vicinity of the breaks in order to compact the chromatin structure and prevent the broken DNA ends from moving apart from each other, thus ensuring effective repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2011.07.003DOI Listing

Publication Analysis

Top Keywords

hela cells
12
butyrate
8
sodium butyrate
8
homologous recombination
8
presence absence
8
absence butyrate
8
dsb repair
8
repair
6
histone deacetylase
4
deacetylase inhibitor
4

Similar Publications

Newly identified c-di-GMP pathway putative EAL domain gene STM0343 regulates stress resistance and virulence in Salmonella enterica serovar Typhimurium.

Vet Res

January 2025

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.

S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.

View Article and Find Full Text PDF

β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!