Background: Cerebral tissue oxygen level modifies crucial processes of neurogenesis, glial and neuronal development during physiological and hypoxic conditions. Whether hypoxia-sensitive factors such as doublecortin (DCX) and hypoxia-inducible transcription factor (HIF)-regulated CXCR4 and SDF-1 modify and activate adaptation to hypoxia in developing brain is not well understood. Present study investigated maturational regulation of oxygen-sensitive developmental genes and proteins in developing mouse brain in relation to the degree of hypoxia.

Methods: Physiological expression of HIF-1, CXCR4, SDF-1 and DCX were analyzed in the brain of C57/BL6 mice (P0-P60). In addition, mice (P0, P7) were exposed to normoxia, acute (8% O(2), 6 h) or chronic hypoxia (10% O(2), 7 d) followed by reoxygenation. Gene expression was analyzed by quantitative PCR, proteins were quantified by Western blot analysis and immunohistochemistry.

Results: Cerebral HIF-1α protein, CXCR4 and DCX mRNA levels showed maturational stage-related peak levels at P0/P1, whereas SDF-1 mRNA levels were highest at P17. CXCR4 and SDF-1 mRNA levels were not altered in response to hypoxia. Whereas DCX mRNA levels significantly increased during acute hypoxia, down-regulation of DCX transcripts was found in response to chronic hypoxia compared to controls, and these changes were related to specifically vulnerable brain regions.

Conclusions: Maturational stage-related dynamic changes of HIF-1α, CXCR4, SDF-1 and DCX may reflect involvement of hypoxia-regulated systems in important developmental regulatory processes of the developing brain. Extending the knowledge of differential effects of hypoxia on neurogenesis and dynamic regulatory networks present data provide a basis for future research on gestational age-specific neuroprotective options.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2011.07.006DOI Listing

Publication Analysis

Top Keywords

cxcr4 sdf-1
16
mrna levels
16
mouse brain
8
developing brain
8
sdf-1 dcx
8
chronic hypoxia
8
dcx mrna
8
maturational stage-related
8
sdf-1 mrna
8
brain
6

Similar Publications

Background: Stromal-cell-derived factor 1 (SDF-1) plays a crucial role in hematopoiesis and has been implicated in acute myeloid leukemia (AML) pathogenesis. Understanding its relationship with chemotherapy outcomes could lead to improved therapeutic approaches for elderly AML patients.

Methods: This study retrospectively analyzed the medical records of elderly AML patients (n = 187) and compared serum SDF-1α levels with age-matched controls (n = 120).

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Saturated fatty acid (SFA) accumulation in liver decreases hepatocyte lipophagy, a type of selective autophagy that degrades intracellular lipid droplets, leading to hepatic insulin resistance (IR), which contributes to simultaneous increases in liver glucose production and fat synthesis, resulting in hyperglycemia and dyslipidemia traits of type 2 diabetes mellitus (T2DM). Stromal cell derived factor-1 (SDF-1), a cytokine produced by hepatocytes, inhibits autophagy. In this study, we evaluated the hypothesis that SDF-1 promoted hepatic IR via inhibiting hepatocyte lipophagy during T2DM.

View Article and Find Full Text PDF

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks.

J Biotechnol

January 2025

College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China. Electronic address:

Modern management of chicks hinders the vertical transmission of intestinal microbiota, which is closely related to immunity. Inulin is a substrate that can be utilized by the microbiota. This study aimed to determine whether fecal microbiota transplantation (FMT) combined with inulin played a "1 + 1 > 2" role in enhancing the development and function of immune organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!