Ultraviolet radiation (UVR) effects on skin have been extensively studied. However, mitochondrial dysfunction and superoxide () production have only been studied using cell cultures, which are useful models, but do not consider the crosstalk between tissues or cellular differentiation. We aimed to evaluate the usefulness of fluorescent dyes to study skin ex vivo. Mitochondrial alterations were evaluated in epidermal cells isolated from UVR-exposed mice. Furthermore, a combination of dyes and antibodies was tested to analyse specific skin cell types. UVR caused a decrease in the percentage of total cells with polarized mitochondria, but did not change the mitochondrial production. However, this production was increased significantly in cells. Furthermore, it was possible to evaluate the cellular damage produced to basal keratinocytes and Langerhans cells. The results show that fluorescent dyes - alone or in combination with antibodies - are useful to analyse cellular events that take place in whole organs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0625.2011.01342.xDOI Listing

Publication Analysis

Top Keywords

epidermal cells
8
fluorescent dyes
8
cells
5
mitochondrial
4
mitochondrial function
4
function evaluation
4
evaluation epidermal
4
cells vivo
4
vivo ultraviolet
4
ultraviolet irradiation
4

Similar Publications

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

A leaf-like structured membrane for highly efficient and persistent radiative cooling.

Mater Horiz

January 2025

Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.

Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.

View Article and Find Full Text PDF

Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!