Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions the optimum cluster size and the hydration thermodynamics obtained with and without account of the bulk medium on the ion-water clustering reaction can be different. The ideas presented in this work are expected to be relevant to experimental studies that translate thermochemistry of ion-water clusters to the thermodynamics of the hydrated ion and to evolving theoretical approaches that combine high-level calculations on clusters with coarse-grained models of the medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3620077 | DOI Listing |
Front Vet Sci
January 2025
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
Introduction: In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated.
Methods: The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.
Ecol Evol
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.
The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates.
Functional biscuit was formulated by fortifying them with polyphenolic extract and fiber-rich residue of defatted date seed powder (DDSP) obtained through microwave-assisted extraction. Effect of particle size (small, medium, and large) and substitution level (2.5%, 5%, and 7.
View Article and Find Full Text PDFFood Funct
January 2025
Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota.
View Article and Find Full Text PDFChemistry
January 2025
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION.
Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!