The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.1892DOI Listing

Publication Analysis

Top Keywords

ferric reductase
12
iron uptake
12
reductive iron
12
cell surface
12
surface ferric
12
cupric reductase
12
iron
9
candida albicans
8
uptake system
8
multicopper oxidase
8

Similar Publications

Iron (Fe) deficiency poses a major threat to pear ( spp.) fruit yield and quality. The () plays a vital part in plant stress responses.

View Article and Find Full Text PDF

Solving the puzzle of copper trafficking in Trypanosoma cruzi: candidate genes that can balance uptake and toxicity.

FEBS J

January 2025

Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.

Article Synopsis
  • Trypanosoma cruzi, the parasite causing Chagas disease, relies on copper (Cu) for growth and development, but its levels must be carefully controlled due to potential toxicity.
  • The study found that Cu is crucial for the proliferation of the epimastigote stage and the transition to the metacyclic form, but the intracellular amastigote stage experiences copper stress during infection.
  • Researchers identified key gene products related to copper metabolism, such as TcCuATPase for copper export and suggested TcIT as a possible copper importer, highlighting a unique model of copper transport and distribution in T. cruzi.
View Article and Find Full Text PDF

The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.

View Article and Find Full Text PDF
Article Synopsis
  • Ferric Reductase Oxidase (FRO) genes are crucial for iron uptake in plants, and a study identified and analyzed 65 FRO homologs in four cotton species, revealing conserved functions and structures of these proteins.
  • *The research showed that FRO proteins are mainly localized to the plasma membrane and highlighted their evolutionary patterns through phylogenetic analysis, as well as variations in gene structure and chromosomal distribution.
  • *Additionally, expression profiling indicated that GhFRO interacts with specific proteins for metal ion transport and showed significant downregulation in response to stress conditions, offering valuable insights into iron homeostasis and stress adaptations in cotton.
View Article and Find Full Text PDF

Pathogenic fungi must appropriately sense the host availability of essential metals such as Fe. In Candida albicans and other yeasts, sensing of Fe involves mitochondrial Fe-S clusters. Yeast mutants for Fe-S cluster assembly sense Fe limitation even when Fe is abundant and hyperaccumulate Fe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!