Purpose: Optic pathway gliomas, which occur in 15-20% of paediatric patients with neurofibromatosis type 1, are the most common central nervous system tumour associated with this neurocutaneous disorder. The detection of optic pathway gliomas is essential for further management but is often delayed in infancy due to oligosymptomatic progression and difficulties in clinical detection. Therefore, the aim of our study was to find a clinical indicator for the presence of optic pathway gliomas in children with neurofibromatosis type 1 in order to facilitate early diagnosis and initiate further ophthalmological and neuroimaging investigations.
Methods: We retrospectively evaluated 70 patients (mean age of 10.5 years; SD of 4.3 years; range of 0.5-19.6 years; 35 females) with neurofibromatosis type 1 seen at the University Children's Hospital of Bern, Switzerland, between January 1998 and December 2008 regarding clinical features of neurofibromatosis type 1 in relation to the presence of optic pathway gliomas.
Results: Fifty-seven of the 70 patients (81.4%) had no clinical or radiological signs of optic pathway gliomas [magnetic resonance imaging (MRI) of the brain in 26/57], whereas 13/70 patients (18.6%) were diagnosed with optic pathway gliomas by MRI. Patients with optic pathway gliomas showed macrocephaly significantly more often compared to patients without optic pathway gliomas (8/13 vs. 9/57, respectively; p = 0.004).
Conclusion: Macrocephaly significantly correlates with the incidence of optic pathway gliomas in children with neurofibromatosis type 1. We therefore hypothesise that in otherwise asymptomatic patients, macrocephaly is an additional indicator for performing MRI to detect optic pathway gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00381-011-1554-2 | DOI Listing |
Ocul Immunol Inflamm
December 2024
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.
Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.
J Transl Med
December 2024
Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.
View Article and Find Full Text PDFInflammation
December 2024
Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China.
Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France.
Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!