17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the last step of the estrogen biosynthesis, namely the reduction of estrone to the biologically potent estradiol. As such it is a potentially attractive drug target for the treatment of estrogen-dependent diseases like breast cancer and endometriosis. 17β-HSD1 belongs to the bisubstrate enzymes and exists as an ensemble of conformations. These principally differ in the region of the βFαG'-loop, suggesting a prominent role in substrate and inhibitor binding. Although several classes of potent non-steroidal 17β-HSD1 inhibitors currently exist, their binding mode is still unclear. We aimed to elucidate the binding mode of bis(hydroxyphenyl)arenes, a highly potent class of 17β-HSD1 inhibitors, and to rank these compounds correctly with respect to their inhibitory potency, two essential aspects in drug design. Ensemble docking experiments resulted in a steroidal binding mode for the closed enzyme conformations and in an alternative mode for the opened and occluded conformers with the inhibitors placed below the NADPH interacting with it synergically via π-π stacking and H-bond formation. Both binding modes were investigated by MD simulations and MM-PBSA binding free energy estimations using as representative member for this class compound 1 (50 nM). Notably, only the alternative binding mode proved stable and was energetically more favorable, while when simulated in the steroidal binding mode compound 1 was displaced from the active site. In parallel, ab initio studies of small NADPH-inhibitor complexes were performed, which supported the importance of the synergistic interaction between inhibitors and cofactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-011-9464-7 | DOI Listing |
Nat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870 Blonie, Poland.
Int J Mol Sci
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!