Lack of substrate inhibition in a monomeric form of human cytosolic SULT2A1.

Horm Mol Biol Clin Investig

Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.

Published: December 2010

Mammalian cytosolic sulfotransferases (SULTs) frequently show substrate inhibition during the sulfation of increasing concentrations of substrates. SULT2A1, a major human liver isoform responsible for the conjugation of hydroxysteroids, bile acids and aliphatic hydroxyl groups in drugs and xenobiotics, is a homodimer and displays substrate inhibition during the conjugation of dehydroepiandrosterone (DHEA). Maltose binding protein (MBP)-SULT2A1 fusion protein, produced as an intermediate step in the purification of the SULT2A1 homodimer, elutes during size exclusion chromatography as a monomer. The initial-rate parameters (K(m) and V(max)) of the monomer (MBP-SULT2A1) and native SULT2A1 dimer for DHEA sulfation are extremely similar; however, the monomer is not inhibited by DHEA. Intrinsic fluorescence studies show that two DHEA molecules bind each SULT2A1 subunit, one in the catalytic site and one in an apparent allosteric site. Lack of dimerization in the MBP-SULT2A1 fusion protein decreased the K(d) for binding of DHEA at the allosteric site. These results suggest that formation of the homodimer is associated with structural rearrangements leading to increased DHEA binding at an allosteric site that is associated with substrate inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150496PMC

Publication Analysis

Top Keywords

substrate inhibition
16
allosteric site
12
mbp-sult2a1 fusion
8
fusion protein
8
dhea
6
sult2a1
5
lack substrate
4
inhibition
4
inhibition monomeric
4
monomeric form
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!