The recent emergence of optical imaging has brought forth a unique challenge for chemists: development of new biocompatible dyes that fluoresce in the near-infrared (NIR) region for optimal use in biomedical applications. This review describes the synthesis of NIR dyes and the design of probes capable of noninvasively imaging molecular events in small animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150548 | PMC |
http://dx.doi.org/10.2174/157017911796117223 | DOI Listing |
Front Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
Anal Chem
January 2025
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu 212003, China.
Early diagnosis of tumors allows effective treatment of primary cancers through localized therapeutic interventions. However, developing diagnostic tools for sensitive, simple, and early tumor (especially less than 2 mm in diameter) detection remains a challenge. Herein, we presented a biomarker-activatable nanoprobe that enabled a near-infrared (NIR) photothermally amplified signal for fluorescence imaging and urinalysis of tumor.
View Article and Find Full Text PDFMolecules
January 2025
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Chemistry, Molecular Basis of Disease, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA.
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the 'push-pull' system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!