Non-acidic compounds induce the intense sweet taste of neoculin, a taste-modifying protein.

Biosci Biotechnol Biochem

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

Published: January 2012

AI Article Synopsis

  • Neoculin is a sweet protein from the fruit of Curculigo latifolia that can convert sour flavors into sweet ones.
  • It has the unique ability to make drinking water taste sweet, suggesting that it can affect non-acidic compounds.
  • Research shows that ammonium chloride and specific amino acids trigger neoculin's sweetness, making it useful for enhancing the flavor of foods rich in amino acids.

Article Abstract

Neoculin, a sweet protein found in the fruit of Curculigo latifolia, has the ability to change sourness into sweetness. Neoculin turns drinking water sweet, indicating that non-acidic compounds may induce the sweetness. We report that ammonium chloride and certain amino acids elicit the intense sweetness of neoculin. Neoculin can thus sweeten amino acid-enriched foods.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.110081DOI Listing

Publication Analysis

Top Keywords

non-acidic compounds
8
compounds induce
8
sweetness neoculin
8
neoculin
5
induce intense
4
intense sweet
4
sweet taste
4
taste neoculin
4
neoculin taste-modifying
4
taste-modifying protein
4

Similar Publications

Hemp ( L.) is an important source of fibre and seed oil and protein. By-products of industrial hemp fibre production, like hemp seeds and cakes, can be used as feed for all animal species as fat and protein source and the whole hemp plant (including stalk and leaves) might be a suitable fibre source for ruminants.

View Article and Find Full Text PDF

Design and virtual screening of a set of non-acidic 4-methyl-4-phenyl-benzenesulfonate-based aldose reductase 2 inhibitors had been developed followed by chemical synthesis. Based on the results, the synthesized compounds 2, 4a,b, 7a-c, 9a-c, 10a-c, 11b,c and 14a-c inhibited the ALR2 enzymatic activity in a submicromolar range (99.29-417 nM) and among them, the derivatives 2, 9b, 10a and 14b were able to inhibit ALR2 by IC of 160.

View Article and Find Full Text PDF

Aligned with the EU Sustainable Development Goals 2030 (EU SDG2030), extensive research is dedicated to enhancing the sustainable use of biomass waste for the extraction of pharmaceutical and nutritional compounds, such as (poly-)phenolic compounds (PC). This study proposes an innovative one-step hydrothermal extraction (HTE) at a high temperature (120 °C), utilizing environmentally friendly acidic natural deep eutectic solvents (NADESs) to replace conventional harmful pre-treatment chemicals and organic solvents. Brewer's spent grain (BSG) and novel malt dust (MD) biomass sources, both obtained from beer production, were characterized and studied for their potential as PC sources.

View Article and Find Full Text PDF

Piperidine is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine .

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a material that has become ubiquitous in the field of organic electronics. It is most commonly used as a hole transport layer (HTL) in optoelectronic devices and can be purchased commercially in various formulations with different properties. Whilst it is a most convenient material to work with, there are stability issues associated with PEDOT:PSS that are detrimental to device stability and these are due to the acidic nature of the PSS component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!