Bacterial fatty acid synthesis (FAS) is a potentially important, albeit controversial, target for antimicrobial therapy. Recent studies have suggested that the addition of exogenous fatty acids (FAs) to growth media can circumvent the effects of FAS-targeting compounds on bacterial growth. Consequently, such agents may have limited in vivo applicability for the treatment of human disease, as free FAs are abundant within the body. Our group has previously developed N-thiolated β-lactams and found they function by interfering with FAS in select pathogenic bacteria, including MRSA. To determine if the FAS targeting activity of N-thiolated β-lactams can be abrogated by exogenous fatty acids, we performed MIC determinations for MRSA strains cultured with the fatty acids oleic acid and Tween 80. We find that, whilst the activity of the known FAS inhibitor triclosan is severely compromised by the addition of both oleic acid and Tween 80, exogenous FAs do not mitigate the antibacterial activity of N-thiolated β-lactams towards MRSA. Consequently, we propose that N-thiolated β-lactams are unique amongst FAS-inhibiting antimicrobials, as their effects are unimpeded by exogenous FAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159845PMC
http://dx.doi.org/10.1016/j.bmcl.2011.07.029DOI Listing

Publication Analysis

Top Keywords

n-thiolated β-lactams
20
fatty acids
16
fas
8
exogenous fatty
8
activity n-thiolated
8
oleic acid
8
acid tween
8
exogenous fas
8
n-thiolated
5
β-lactams
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!