Synthesis of rhodamine B-benzenesulfonamide conjugates and their inhibitory activity against human α- and bacterial/fungal β-carbonic anhydrases.

Bioorg Med Chem Lett

Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.

Published: September 2011

A series of fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors were obtained by attaching rhodamine B moieties to the scaffold of benzenesulfonamides. The new compounds have been investigated for the inhibition of 12 human α-CA isoforms (hCA I-hCA XIV), three bacterial and one fungal β-class enzymes from the pathogens Mycobacterium tuberculosis and Candida albicans. All types of inhibitory activities have been detected, with several compounds showing low nanomolar inhibition against the transmembrane isoforms hCA IX, XII (cancer-associated) and XIV. The β-CAs were inhibited in the micromolar range by these compounds which may have applications for the imaging of hypoxic tumors or bacteria due to their fluorescent moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.07.045DOI Listing

Publication Analysis

Top Keywords

isoforms hca
8
synthesis rhodamine
4
rhodamine b-benzenesulfonamide
4
b-benzenesulfonamide conjugates
4
conjugates inhibitory
4
inhibitory activity
4
activity human
4
human α-
4
α- bacterial/fungal
4
bacterial/fungal β-carbonic
4

Similar Publications

In this study, four depsides were isolated from Origanum dictamnus L. and Satureja pilosa Velen. medicinal plants and their structures were assessed by means of one-dimensional (1D)- and two-dimensional (2D)-nuclear magnetic resonance, high resolution mass spectrometry, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications.

View Article and Find Full Text PDF

The Antiepileptic Drug Levetiracetam Inhibits Carbonic Anhydrase: and Studies on Catalytically Active Human Isoforms.

ACS Med Chem Lett

December 2024

NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence Italy.

Several antiepileptic drugs (AEDs) have been found to inhibit human carbonic anhydrases (hCAs), paving the way for repurposing AEDs for the treatment of various diseases, including cancer. Here, the hCAs inhibitory effects of levetiracetam, a highly prescribed AED that does not bear a common zinc-binding group, were investigated and . Levetiracetam inhibited all tested hCAs, although with a specific profile compared to the reference acetazolamide, with remarkable efficacy against tumor-associated hCA IX and XII.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) are crucial in regulating various physiological processes in the body. The overexpression of isoforms human carbonic anhydrases (hCA) IX and hCA XII is linked to tumour progression. The selective inhibition of CA IX and CA XII isoforms can result in the development of better cancer treatment strategies.

View Article and Find Full Text PDF

Sulfonate derivatives are an essential class of compounds with diverse pharmacological applications. This study presents the synthesis and detailed characterization of six novel Schiff base sulfonate derivatives (L1-L6) through spectroscopic techniques (FTIR and NMR). Their inhibitory potential was evaluated against human carbonic anhydrase isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE), which are crucial therapeutic targets for diseases such as glaucoma, epilepsy, and Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!