Continuous flowing membraneless microbial fuel cells with separated electrode chambers.

Bioresour Technol

Laboratory of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.

Published: October 2011

Microbial fuel cell (MFC) is an emerging technology in the energy and environment field. Its application is limited due to its high cost caused by the utilization of membranes and noble metal catalysts. In this paper, a membraneless MFC, with separated electrode chambers, was designed. The two separated chambers are connected via a channel and the continuous electrolyte flow from anode to cathode drives proton transfer. The proton mass transfer coefficiency in this MFC is 0.9086 cm/s, which is higher than reported MFCs with membranes, such as J-cloth and glass fiber. The maximum output voltage is 160.7 mV, with 1000 Ω resistor. Its peak power density is 24.33 mW/m³. SCOD removal efficiency can reach 90.45% via this MFC. If the connection between the two electrode chambers is blocked, the performance of MFC will decrease severely. All the above results prove the feasibility and advantages of this special MFC model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.07.056DOI Listing

Publication Analysis

Top Keywords

electrode chambers
12
microbial fuel
8
separated electrode
8
mfc
6
continuous flowing
4
flowing membraneless
4
membraneless microbial
4
fuel cells
4
cells separated
4
chambers
4

Similar Publications

Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.

View Article and Find Full Text PDF

Background: Delayed lead perforation is a rare complication of cardiac implantable electronic device (CIED). Clinical presentations range from completely asymptomatic to pericardial tamponade. Surgical lead extraction is recommended and transvenous lead extraction (TLE) with surgical backup is an alternative method.

View Article and Find Full Text PDF

Introduction: cardiac pacing is the only lifesaving procedure which is effective for major cardiac conduction disorders. In sub-Saharan Africa, few pacemakers are implanted, compared to Western countries. This study aimed to describe the indications for cardiac pacing in four hospitals in Senegal, to evaluate its practical modalities, to identify pacemaker's complications and their predisposing factors and to evaluate the main challenges for cardiac pacing in Senegal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!