A number of distinct cuproproteins of the mitochondrial inner membrane are required for the assembly of cytochrome oxidase (COX), thought to function in a "bucket brigade" fashion to provide copper to the Cu(A) and Cu(B) sites. In yeast, the loss of two these proteins, Sco1p and Cox11p, leads to respiratory deficiency and a specific inability to survive exposure to hydrogen peroxide (H(2)O(2)). Using a quantitative assay, we have identified subtle differences in the peroxide-sensitive phenotypes between sco1 and cox11 mutant strains. Interestingly, the peroxide sensitivity of the sco1 null strain can be suppressed by overexpressing either SCO2 or COX11, although overexpression of neither SCO1 nor SCO2 can rescue the cox11 null strain. We also find that overexpression of either CTT1, encoding the cytosolic catalase T, or CTA1, encoding the mitochondrial matrix catalase, suppresses the peroxide sensitivity in both the sco1 and the cox11 null mutants. Direct measurement of peroxide metabolism shows that sco1 and cox11 null strains fail to degrade a significant amount of exogenously provided H(2)O(2). Taken together, our data demonstrate that although Cox11p and Sco1p play distinct roles in COX assembly, they seem to play overlapping or related roles in peroxide metabolism that require further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.024 | DOI Listing |
J Agric Food Chem
January 2025
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFDNAJC15 is a mitochondrial TIMM23-related co-chaperonin known for its role in regulating oxidative phosphorylation efficiency, oxidative stress response and lipid metabolism. Recently, it has been proposed that the loss of DNAJC15 correlates with cisplatin (CDDP)-resistance onset in ovarian cancer (OC), suggesting this protein as a potential prognostic factor during OC progression. However, the molecular mechanisms through which DNAJC15 contributes to CDDP response remains poorly investigated.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!