Shamokin Creek is a tributary of the Susquehanna River in central Pennsylvania that is heavily impacted by the acid mine drainage (AMD) caused by the oxidation of pyrite from the region's extensive anthracite coal mining industry. Recent studies have begun to characterize the microbial communities present in this and other AMD-impacted waters, but varying environmental conditions have complicated attempts to determine the ecological impacts of individual bacterial species within these communities. This study developed a small-scale biofilm reactor protocol that allowed us to simultaneously monitor the development of bacterial biofilm communities in AMD-impacted creek collected water using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, while assessing the impacts that the developing biofilms were having on water quality. Our analysis confirmed that the diversity and composition of these small in situ biofilm communities could be monitored using molecular methods, and indicated the possible presence of many taxa frequently found in AMD environments, including Sulfobacillus, Nitrospira, Desulfovibrio, Geobacter, and Leptothrix species. A significant increase in the total sulfate was observed in the bioreactor, and as most likely due to the accumulation of sulfur-oxidizing bacteria such as Sulfobacillus in the biofilms. This system will allow us to study the microbial ecology of Shamokin Creek through controlled experiments that will ultimately integrate microscopic, molecular, physiological and chemical analyses, and that can be utilized to develop more effective and cost-efficient environmental remediation techniques for AMD-impacted areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2011.07.015DOI Listing

Publication Analysis

Top Keywords

biofilm communities
12
bacterial biofilm
8
acid mine
8
mine drainage
8
shamokin creek
8
communities amd-impacted
8
communities
5
development small-scale
4
small-scale bioreactor
4
bioreactor method
4

Similar Publications

Microbial community analysis of supragingival plaque in patients with fixed prostheses.

J Prosthet Dent

January 2025

Associate Professor, Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Xiangzhou, Zhuhai City, Guangdong, PR China. Electronic address:

Statement Of Problem: Harmony between prostheses and periodontal tissues is essential. The presence of a fixed prosthesis has been reported to increase the risk of periodontal lesion onset in abutment teeth and to affect longevity. However, studies comparing the supragingival plaque biofilm on fixed prostheses and natural teeth are lacking.

View Article and Find Full Text PDF

Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.

View Article and Find Full Text PDF

Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.

NPJ Biofilms Microbiomes

January 2025

School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.

Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.

View Article and Find Full Text PDF

Aims: We investigated the combined effects of pipe materials and disinfection chemicals on bacterial community and its active RNA fraction in water and biofilms in a pilot-scale premise plumbing system.

Methods And Results: The changes in bacterial communities were studied within four pipelines using copper and cross-linked polyethylene (PEX) pipe with chlorine or chloramine disinfection. The total and active bacterial communities and the presence of opportunistic pathogens (Legionella spp.

View Article and Find Full Text PDF
Article Synopsis
  • Marine plastispheres are dynamic microhabitats where microorganisms thrive on plastic debris, but their initial formation and interactions are not well understood.
  • This study used metaproteomic and metagenomic techniques to investigate the microbial diversity and biofilm development on low-density polyethylene (LDPE) over 3 and 7 days, identifying key organisms like Pseudomonas and Marinomonas.
  • Findings revealed that Pseudomonas dominated early, while Marinomonas and other genera became more prominent later, showcasing various metabolic pathways and competitive advantages that enhance our understanding of plastisphere ecology and its biotechnological potential.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!