SPR based biosensors register binding of analytes to the surface with immobilized receptors by measuring changes of the refractive index near this surface. An important task in the improvement of this measurement technology is a separation of signals, corresponding to the changes in the chemosensitive layer, from undesired contributions of bulk phase, for example, due to fluctuations of temperature, concentrations of solutes, pressure. The wavelength of the incident light influences strongly the penetration depth of the corresponding evanescent wave. This dependence was exploited here for compensation of the contribution of the bulk refractive index. It was performed using differential SPR measurements at two wavelengths with differing penetration depths. Theoretical analysis and numerical optimization of the suggested approach, named a Penetration Difference Self-Referencing SPR (PDSR-SPR), were performed. Experimental test was performed using 658 and 980 nm laser diodes. Over 20 times suppression of variations of bulk refractive index with magnitude up to 1000 μRIU was observed. Finally, PDSR-SPR approach was applied for monitoring of antibodies binding to the immobilized antigens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2011.07.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!