The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ~ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.07.025DOI Listing

Publication Analysis

Top Keywords

growth factors
8
control cell
8
spatially control
8
biochemical cues
8
oriented sub-micron
8
sub-micron fibers
8
myocyte differentiation
8
differentiation
5
fibers
5
bioprinting growth
4

Similar Publications

Whey proteins, the most abundant proteins in human milk (HM), play a vital role in the growth and development of infants. This review first elaborates on the main components of HM whey proteins, including various proteins with specific functions, and details the functions of these proteins in terms of infant nutrition, immunity, as well as growth and development. Secondly, it analyzes factors that affect HM whey proteins, such as maternal differences, dietary habits, and geographical differences.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a significant cause of death among patients with chronic kidney disease (CKD). Emerging data suggest a crucial role of fibroblast growth factor 23 (FGF23) in the pathogenesis of HF in CKD patients. The present study aimed to investigate whether the serum intact FGF23 (iFGF23) level is elevated when ejection fraction (EF) is preserved and to evaluate its predictive value for incident HF and cardiac mortality in CKD patients with preserved EF.

View Article and Find Full Text PDF

Introduction: Monitoring and evaluation of maternal and child nutrition programs typically concentrates on overall population-level results. There is limited understanding, however, of how intervention reach and expected outcomes differ among sub-populations, necessary insight for addressing inequalities. These analyses aim to determine if maternal exposure to social and behavior change (SBC) interventions is associated with scales of maternal practices (antenatal care, iron and folic acid in pregnancy, diet in pregnancy, postnatal care, iron and folic acid postpartum, and maternal dietary diversity) and child practices (institutional birth, health mothers' group participation, growth monitoring and promotion, early initiation of breastfeeding and infant and young child feeding) in Nepal, overall and by wealth, caste, and geography.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!